基于自分支竞争学习的图像分割

T. Guan, Ling-Ling Li
{"title":"基于自分支竞争学习的图像分割","authors":"T. Guan, Ling-Ling Li","doi":"10.1109/BICTA.2010.5645201","DOIUrl":null,"url":null,"abstract":"This paper proposes an online competitive learning paradigm, Self-Branching Competitive Learning(SBCL), which uses K-Nearest Neighborhood(KNN) and iterative variance estimation for clustering analysis. SBCL adopts the incremental learning strategy, starts clustering data from one initial prototype and then branches if the bias between vectors is larger than the pre-specified scale. SBCL is unrelated to initial cluster number or data distribution, avoids the dead node problem and suits to analyze the online input data. We apply SBCL to two classical problems: clustering data with mixed Gaussian distributions and segmenting MRI images. The experimental results shew that SBCL has good performance in these problems.","PeriodicalId":302619,"journal":{"name":"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)","volume":"367 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Self-Branching Competitive Learning for image segmentation\",\"authors\":\"T. Guan, Ling-Ling Li\",\"doi\":\"10.1109/BICTA.2010.5645201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an online competitive learning paradigm, Self-Branching Competitive Learning(SBCL), which uses K-Nearest Neighborhood(KNN) and iterative variance estimation for clustering analysis. SBCL adopts the incremental learning strategy, starts clustering data from one initial prototype and then branches if the bias between vectors is larger than the pre-specified scale. SBCL is unrelated to initial cluster number or data distribution, avoids the dead node problem and suits to analyze the online input data. We apply SBCL to two classical problems: clustering data with mixed Gaussian distributions and segmenting MRI images. The experimental results shew that SBCL has good performance in these problems.\",\"PeriodicalId\":302619,\"journal\":{\"name\":\"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)\",\"volume\":\"367 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BICTA.2010.5645201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BICTA.2010.5645201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

SBCL采用增量学习策略,从一个初始原型开始聚类,如果向量之间的偏差大于预先设定的规模,则进行分支。SBCL与初始簇数或数据分布无关,避免了死节点问题,适合分析在线输入数据。我们将SBCL应用于两个经典问题:混合高斯分布数据聚类和MRI图像分割。实验结果表明,SBCL在这些问题上具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-Branching Competitive Learning for image segmentation
This paper proposes an online competitive learning paradigm, Self-Branching Competitive Learning(SBCL), which uses K-Nearest Neighborhood(KNN) and iterative variance estimation for clustering analysis. SBCL adopts the incremental learning strategy, starts clustering data from one initial prototype and then branches if the bias between vectors is larger than the pre-specified scale. SBCL is unrelated to initial cluster number or data distribution, avoids the dead node problem and suits to analyze the online input data. We apply SBCL to two classical problems: clustering data with mixed Gaussian distributions and segmenting MRI images. The experimental results shew that SBCL has good performance in these problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信