Reed-Muller RM(m−3,m)码的高效最大似然译码

A. Thangaraj, H. Pfister
{"title":"Reed-Muller RM(m−3,m)码的高效最大似然译码","authors":"A. Thangaraj, H. Pfister","doi":"10.1109/ISIT44484.2020.9174065","DOIUrl":null,"url":null,"abstract":"Reed–Muller (RM) codes, a classical family of codes known for their elegant algebraic structure, have recently been shown to achieve capacity under maximum-likelihood (ML) decoding on the binary erasure channel and this has rekindled interest in their efficient decoding. We consider the code family RM(m−3,m) and develop a new ML decoder, for transmission over the binary symmetric channel, that exploits their large symmetry group. The new decoder has lower complexity than an earlier method introduced by Seroussi and Lempel in 1983.","PeriodicalId":159311,"journal":{"name":"2020 IEEE International Symposium on Information Theory (ISIT)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Efficient Maximum-Likelihood Decoding of Reed–Muller RM(m−3,m) Codes\",\"authors\":\"A. Thangaraj, H. Pfister\",\"doi\":\"10.1109/ISIT44484.2020.9174065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reed–Muller (RM) codes, a classical family of codes known for their elegant algebraic structure, have recently been shown to achieve capacity under maximum-likelihood (ML) decoding on the binary erasure channel and this has rekindled interest in their efficient decoding. We consider the code family RM(m−3,m) and develop a new ML decoder, for transmission over the binary symmetric channel, that exploits their large symmetry group. The new decoder has lower complexity than an earlier method introduced by Seroussi and Lempel in 1983.\",\"PeriodicalId\":159311,\"journal\":{\"name\":\"2020 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT44484.2020.9174065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT44484.2020.9174065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

Reed-Muller (RM)码是一种以其优雅的代数结构而闻名的经典码族,最近在二进制擦除信道上显示出在最大似然(ML)解码下的容量,这重新引起了人们对其有效解码的兴趣。我们考虑编码族RM(m−3,m),并开发了一种新的ML解码器,用于在二进制对称信道上传输,利用它们的大对称群。新的解码器比Seroussi和Lempel在1983年引入的更早的方法具有更低的复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Maximum-Likelihood Decoding of Reed–Muller RM(m−3,m) Codes
Reed–Muller (RM) codes, a classical family of codes known for their elegant algebraic structure, have recently been shown to achieve capacity under maximum-likelihood (ML) decoding on the binary erasure channel and this has rekindled interest in their efficient decoding. We consider the code family RM(m−3,m) and develop a new ML decoder, for transmission over the binary symmetric channel, that exploits their large symmetry group. The new decoder has lower complexity than an earlier method introduced by Seroussi and Lempel in 1983.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信