公共云提供商处理大地理空间数据的成本优化架构

João Bachiega, M. Reis, M. Holanda, Aleteia P. F. Araujo
{"title":"公共云提供商处理大地理空间数据的成本优化架构","authors":"João Bachiega, M. Reis, M. Holanda, Aleteia P. F. Araujo","doi":"10.1109/BigDataCongress.2018.00032","DOIUrl":null,"url":null,"abstract":"Cloud computing is a suitable platform for running applications to process big data. Currently, with the increase in the volume of geographic and spatial data volume, conceptualized as Big Geospatial Data, a variety of tools have been developed to efficiently process this data. The index applied to the dataset is an important aspect. This paper presents an architecture, supported by a Knownlegde Base and an Inference Engine, to process big geospatial data in public cloud providers with the ultimate goal of optimizing costs. The tests executed demonstrated that the rules created are capable of optimizing the total costs for processing large geospatial data up to 71%.","PeriodicalId":177250,"journal":{"name":"2018 IEEE International Congress on Big Data (BigData Congress)","volume":"157 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An Architecture for Cost Optimization in the Processing of Big Geospatial Data in Public Cloud Providers\",\"authors\":\"João Bachiega, M. Reis, M. Holanda, Aleteia P. F. Araujo\",\"doi\":\"10.1109/BigDataCongress.2018.00032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cloud computing is a suitable platform for running applications to process big data. Currently, with the increase in the volume of geographic and spatial data volume, conceptualized as Big Geospatial Data, a variety of tools have been developed to efficiently process this data. The index applied to the dataset is an important aspect. This paper presents an architecture, supported by a Knownlegde Base and an Inference Engine, to process big geospatial data in public cloud providers with the ultimate goal of optimizing costs. The tests executed demonstrated that the rules created are capable of optimizing the total costs for processing large geospatial data up to 71%.\",\"PeriodicalId\":177250,\"journal\":{\"name\":\"2018 IEEE International Congress on Big Data (BigData Congress)\",\"volume\":\"157 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Congress on Big Data (BigData Congress)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BigDataCongress.2018.00032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Congress on Big Data (BigData Congress)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BigDataCongress.2018.00032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

云计算是运行处理大数据的应用程序的合适平台。目前,随着地理和空间数据量的增加,人们开发了各种工具来有效地处理这些数据,这些数据被称为大地理空间数据。应用于数据集的索引是一个重要方面。本文提出了一个由知识库和推理引擎支持的架构,以优化成本为最终目标处理公共云提供商中的大地理空间数据。执行的测试表明,所创建的规则能够将处理大型地理空间数据的总成本优化到71%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Architecture for Cost Optimization in the Processing of Big Geospatial Data in Public Cloud Providers
Cloud computing is a suitable platform for running applications to process big data. Currently, with the increase in the volume of geographic and spatial data volume, conceptualized as Big Geospatial Data, a variety of tools have been developed to efficiently process this data. The index applied to the dataset is an important aspect. This paper presents an architecture, supported by a Knownlegde Base and an Inference Engine, to process big geospatial data in public cloud providers with the ultimate goal of optimizing costs. The tests executed demonstrated that the rules created are capable of optimizing the total costs for processing large geospatial data up to 71%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信