机器人逆运动学建模的神经网络体系结构比较

J. A. Driscoll
{"title":"机器人逆运动学建模的神经网络体系结构比较","authors":"J. A. Driscoll","doi":"10.1109/SECON.2000.845423","DOIUrl":null,"url":null,"abstract":"Describes the use of neural networks to model the inverse kinematics of robot manipulators, including a redundant manipulator The use of multiple cooperating networks for the overall modeling of inverse kinematics was explored. A variety of network architectures was used, and their performance was compared. Neural networks were also used to train robots in specified obstacle-avoidance trajectories.","PeriodicalId":206022,"journal":{"name":"Proceedings of the IEEE SoutheastCon 2000. 'Preparing for The New Millennium' (Cat. No.00CH37105)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Comparison of neural network architectures for the modeling of robot inverse kinematics\",\"authors\":\"J. A. Driscoll\",\"doi\":\"10.1109/SECON.2000.845423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Describes the use of neural networks to model the inverse kinematics of robot manipulators, including a redundant manipulator The use of multiple cooperating networks for the overall modeling of inverse kinematics was explored. A variety of network architectures was used, and their performance was compared. Neural networks were also used to train robots in specified obstacle-avoidance trajectories.\",\"PeriodicalId\":206022,\"journal\":{\"name\":\"Proceedings of the IEEE SoutheastCon 2000. 'Preparing for The New Millennium' (Cat. No.00CH37105)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE SoutheastCon 2000. 'Preparing for The New Millennium' (Cat. No.00CH37105)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SECON.2000.845423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE SoutheastCon 2000. 'Preparing for The New Millennium' (Cat. No.00CH37105)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.2000.845423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

描述了利用神经网络对包括冗余机械手在内的机器人机械手进行逆运动学建模,并探讨了利用多个协作网络进行逆运动学整体建模的方法。采用了多种网络体系结构,并对其性能进行了比较。神经网络也被用于训练机器人在指定的避障轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of neural network architectures for the modeling of robot inverse kinematics
Describes the use of neural networks to model the inverse kinematics of robot manipulators, including a redundant manipulator The use of multiple cooperating networks for the overall modeling of inverse kinematics was explored. A variety of network architectures was used, and their performance was compared. Neural networks were also used to train robots in specified obstacle-avoidance trajectories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信