Peter Wägemann, T. Distler, Heiko Janker, Phillip Raffeck, V. Sieh
{"title":"混合临界能量中性实时系统的内核","authors":"Peter Wägemann, T. Distler, Heiko Janker, Phillip Raffeck, V. Sieh","doi":"10.1109/RTAS.2016.7461320","DOIUrl":null,"url":null,"abstract":"Energy-neutral real-time systems harvest the entire energy they use from their environment, making it essential to treat energy as an equally important resource as time. As a result, such systems need to solve a number of problems that so far have not been addressed by traditional real-time systems. In particular, this includes the scheduling of tasks with both time and energy constraints, the monitoring of energy budgets, as well as the survival of blackout periods during which not enough energy is available to keep the system fully operational. In this paper, we address these issues presenting ENOS, an operating-system kernel for energy-neutral real-time systems. ENOS considers mixed time criticality levels for different energy criticality modes, which enables a decoupling of time and energy constraints during phases when one is considered less critical than the other. When switching the energy criticality mode, the system also changes the set of tasks to be executed and is therefore able to dynamically adapt its energy consumption depending on external conditions. By keeping track of the energy budget available, ENOS ensures that in case of a blackout the system state is safely stored to persistent memory, allowing operations to resume at a later point when enough energy is harvested again.","PeriodicalId":338179,"journal":{"name":"2016 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"A Kernel for Energy-Neutral Real-Time Systems with Mixed Criticalities\",\"authors\":\"Peter Wägemann, T. Distler, Heiko Janker, Phillip Raffeck, V. Sieh\",\"doi\":\"10.1109/RTAS.2016.7461320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy-neutral real-time systems harvest the entire energy they use from their environment, making it essential to treat energy as an equally important resource as time. As a result, such systems need to solve a number of problems that so far have not been addressed by traditional real-time systems. In particular, this includes the scheduling of tasks with both time and energy constraints, the monitoring of energy budgets, as well as the survival of blackout periods during which not enough energy is available to keep the system fully operational. In this paper, we address these issues presenting ENOS, an operating-system kernel for energy-neutral real-time systems. ENOS considers mixed time criticality levels for different energy criticality modes, which enables a decoupling of time and energy constraints during phases when one is considered less critical than the other. When switching the energy criticality mode, the system also changes the set of tasks to be executed and is therefore able to dynamically adapt its energy consumption depending on external conditions. By keeping track of the energy budget available, ENOS ensures that in case of a blackout the system state is safely stored to persistent memory, allowing operations to resume at a later point when enough energy is harvested again.\",\"PeriodicalId\":338179,\"journal\":{\"name\":\"2016 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTAS.2016.7461320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTAS.2016.7461320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Kernel for Energy-Neutral Real-Time Systems with Mixed Criticalities
Energy-neutral real-time systems harvest the entire energy they use from their environment, making it essential to treat energy as an equally important resource as time. As a result, such systems need to solve a number of problems that so far have not been addressed by traditional real-time systems. In particular, this includes the scheduling of tasks with both time and energy constraints, the monitoring of energy budgets, as well as the survival of blackout periods during which not enough energy is available to keep the system fully operational. In this paper, we address these issues presenting ENOS, an operating-system kernel for energy-neutral real-time systems. ENOS considers mixed time criticality levels for different energy criticality modes, which enables a decoupling of time and energy constraints during phases when one is considered less critical than the other. When switching the energy criticality mode, the system also changes the set of tasks to be executed and is therefore able to dynamically adapt its energy consumption depending on external conditions. By keeping track of the energy budget available, ENOS ensures that in case of a blackout the system state is safely stored to persistent memory, allowing operations to resume at a later point when enough energy is harvested again.