{"title":"基于克隆选择原理的伤口愈合算法对分数阶控制器进行最优调整","authors":"Mehmet Çinar","doi":"10.18642/ijamml_710012219","DOIUrl":null,"url":null,"abstract":"Fractional-order PID (FOPID) controller is a generalization of standard PID controller using fractional calculus. Compared to PID controller, the tuning of FOPID is more complex and remains a challenge problem. This paper focuses on the design of FOPID controller using wound healing algorithm (WHA) based on clonal selection principle. The tuning of FOPID controller is formulated as a nonlinear optimization problem, in which the objective function is composed of overshoot, steady-state error, raising time and settling time. WHA algorithm, a newly developed evolutionary algorithm inspired by human immune system, is used as the optimizer to search the best parameters of FOPID controller. The designed WHA-FOPID controller is applied to various systems. Numerous numerical simulations and comparisons with other FOPID/PID controllers show that the WHA-FOPID controller can not only ensure good control performance with respect to reference input but also improve the system robustness with respect to model uncertainties.","PeriodicalId":405830,"journal":{"name":"International Journal of Applied Mathematics and Machine Learning","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OPTIMAL TUNING OF FRACTIONAL ORDER CONTROLLER USING WOUND HEALING ALGORITHM BASED ON CLONAL SELECTION PRINCIPLE\",\"authors\":\"Mehmet Çinar\",\"doi\":\"10.18642/ijamml_710012219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fractional-order PID (FOPID) controller is a generalization of standard PID controller using fractional calculus. Compared to PID controller, the tuning of FOPID is more complex and remains a challenge problem. This paper focuses on the design of FOPID controller using wound healing algorithm (WHA) based on clonal selection principle. The tuning of FOPID controller is formulated as a nonlinear optimization problem, in which the objective function is composed of overshoot, steady-state error, raising time and settling time. WHA algorithm, a newly developed evolutionary algorithm inspired by human immune system, is used as the optimizer to search the best parameters of FOPID controller. The designed WHA-FOPID controller is applied to various systems. Numerous numerical simulations and comparisons with other FOPID/PID controllers show that the WHA-FOPID controller can not only ensure good control performance with respect to reference input but also improve the system robustness with respect to model uncertainties.\",\"PeriodicalId\":405830,\"journal\":{\"name\":\"International Journal of Applied Mathematics and Machine Learning\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mathematics and Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18642/ijamml_710012219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18642/ijamml_710012219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
OPTIMAL TUNING OF FRACTIONAL ORDER CONTROLLER USING WOUND HEALING ALGORITHM BASED ON CLONAL SELECTION PRINCIPLE
Fractional-order PID (FOPID) controller is a generalization of standard PID controller using fractional calculus. Compared to PID controller, the tuning of FOPID is more complex and remains a challenge problem. This paper focuses on the design of FOPID controller using wound healing algorithm (WHA) based on clonal selection principle. The tuning of FOPID controller is formulated as a nonlinear optimization problem, in which the objective function is composed of overshoot, steady-state error, raising time and settling time. WHA algorithm, a newly developed evolutionary algorithm inspired by human immune system, is used as the optimizer to search the best parameters of FOPID controller. The designed WHA-FOPID controller is applied to various systems. Numerous numerical simulations and comparisons with other FOPID/PID controllers show that the WHA-FOPID controller can not only ensure good control performance with respect to reference input but also improve the system robustness with respect to model uncertainties.