具有圆柱形自由边界的二元混合物在小马兰戈尼数下的运动

K. A. Victor, L. Natalya
{"title":"具有圆柱形自由边界的二元混合物在小马兰戈尼数下的运动","authors":"K. A. Victor, L. Natalya","doi":"10.17516/1997-1397-2018-11-2-194-205","DOIUrl":null,"url":null,"abstract":"We studied the problem of axisymmetric motion of a binary mixture with a cylindrical free boundary at small Marangoni numbers. Using Laplace transformation properties the exact analytical solution is obtained. It is shown that a stationary solution is the limiting one with the growth of time if satisfy certain conditions imposed on the external temperature. Some examples of numerical reconstruction of the velocity, temperature and concentration fields are considered, which correspond well with the theoretical results.","PeriodicalId":422202,"journal":{"name":"Journal of Siberian Federal University. Mathematics and Physics","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The motion of a binary mixture with a cylindrical free boundary at small Marangoni numbers\",\"authors\":\"K. A. Victor, L. Natalya\",\"doi\":\"10.17516/1997-1397-2018-11-2-194-205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We studied the problem of axisymmetric motion of a binary mixture with a cylindrical free boundary at small Marangoni numbers. Using Laplace transformation properties the exact analytical solution is obtained. It is shown that a stationary solution is the limiting one with the growth of time if satisfy certain conditions imposed on the external temperature. Some examples of numerical reconstruction of the velocity, temperature and concentration fields are considered, which correspond well with the theoretical results.\",\"PeriodicalId\":422202,\"journal\":{\"name\":\"Journal of Siberian Federal University. Mathematics and Physics\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Siberian Federal University. Mathematics and Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17516/1997-1397-2018-11-2-194-205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Siberian Federal University. Mathematics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17516/1997-1397-2018-11-2-194-205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了具有圆柱自由边界的二元混合物在小马兰戈尼数下的轴对称运动问题。利用拉普拉斯变换性质,得到了精确解析解。结果表明,当满足一定的外部温度条件时,固定解是随时间增长的极限解。文中给出了速度场、温度场和浓度场的数值重建实例,与理论结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The motion of a binary mixture with a cylindrical free boundary at small Marangoni numbers
We studied the problem of axisymmetric motion of a binary mixture with a cylindrical free boundary at small Marangoni numbers. Using Laplace transformation properties the exact analytical solution is obtained. It is shown that a stationary solution is the limiting one with the growth of time if satisfy certain conditions imposed on the external temperature. Some examples of numerical reconstruction of the velocity, temperature and concentration fields are considered, which correspond well with the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信