有毒海洋生物的神经效应。

Contemporary neurology series Pub Date : 1975-01-01
R V Southcott
{"title":"有毒海洋生物的神经效应。","authors":"R V Southcott","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The concept of the sea as a source of noxious agents is perhaps not a familiar one to clinical neurologists, judging by the lack of reference to these agents in standard textbooks. Chemical, physiologic, and pharmacologic laboratories are increasingly investigating the properties of marine toxins, finding in them compounds with interesting and novel structures or unusual physiologic effects. Such substances are seen as possible agents for biologic and, more particularly, physiologic research, and as possible sources of new pharmaceuticals. These include hormone-like substances and antiviral or antitumor agents. Despite these specialized developments, which are in large measure a consequence of the technological advances of the present century, the clinician is at times directly concerned with the effects of marine toxic substances. For example, in Japan, puffer fish or tetrodotoxic poisoning is one of the major causes of deaths from food poisoning. Another marine toxin that has caused many explosive outbreaks of food poisoning. with many deaths in various parts of the world, comes from clams or mussels. This toxin, saxitoxin, is produced by species of marine protozoa including Gonyaulax, and is concentrated in filter-feeding molluscs. These two examples were of significant interest in medicine long before the technologic developments of the twentieth century. In the last few decades, entirely new problems of marine intoxication have arisen as a result of marine pollution from the disposal of industrial wastes in the sea. The most striking example of a man-made marine intoxication has been the outbreak of Minamata disease. In Minamata, Japan, the disposal of mercury-contaminated industrial wastes from a plastics factory into an enclosed bay, followed by human consumption of the contaminated fishes, crabs, or shellfish, led to many instances of acute cerebral degeneration. With the increasing exploration of the sea for both pleasure and economic exploitation, which is a feature of the second half of the twentieth century, it may be expected that the frequency and variety of human intoxications by marine creatures will be increased. This chapter reviews the neurologic effects of noxious substances of marine biologic origin. The subject is now developing so rapidly that overall surveys, such as this, of the general animal life of theocens will soon be beyond the scope of a single review. Nevertheless, it is hoped that the references given will enable the interested reader to pursue particular aspects further.</p>","PeriodicalId":75738,"journal":{"name":"Contemporary neurology series","volume":"12 ","pages":"165-258"},"PeriodicalIF":0.0000,"publicationDate":"1975-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The neurologic effects of noxious marine creatures.\",\"authors\":\"R V Southcott\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The concept of the sea as a source of noxious agents is perhaps not a familiar one to clinical neurologists, judging by the lack of reference to these agents in standard textbooks. Chemical, physiologic, and pharmacologic laboratories are increasingly investigating the properties of marine toxins, finding in them compounds with interesting and novel structures or unusual physiologic effects. Such substances are seen as possible agents for biologic and, more particularly, physiologic research, and as possible sources of new pharmaceuticals. These include hormone-like substances and antiviral or antitumor agents. Despite these specialized developments, which are in large measure a consequence of the technological advances of the present century, the clinician is at times directly concerned with the effects of marine toxic substances. For example, in Japan, puffer fish or tetrodotoxic poisoning is one of the major causes of deaths from food poisoning. Another marine toxin that has caused many explosive outbreaks of food poisoning. with many deaths in various parts of the world, comes from clams or mussels. This toxin, saxitoxin, is produced by species of marine protozoa including Gonyaulax, and is concentrated in filter-feeding molluscs. These two examples were of significant interest in medicine long before the technologic developments of the twentieth century. In the last few decades, entirely new problems of marine intoxication have arisen as a result of marine pollution from the disposal of industrial wastes in the sea. The most striking example of a man-made marine intoxication has been the outbreak of Minamata disease. In Minamata, Japan, the disposal of mercury-contaminated industrial wastes from a plastics factory into an enclosed bay, followed by human consumption of the contaminated fishes, crabs, or shellfish, led to many instances of acute cerebral degeneration. With the increasing exploration of the sea for both pleasure and economic exploitation, which is a feature of the second half of the twentieth century, it may be expected that the frequency and variety of human intoxications by marine creatures will be increased. This chapter reviews the neurologic effects of noxious substances of marine biologic origin. The subject is now developing so rapidly that overall surveys, such as this, of the general animal life of theocens will soon be beyond the scope of a single review. Nevertheless, it is hoped that the references given will enable the interested reader to pursue particular aspects further.</p>\",\"PeriodicalId\":75738,\"journal\":{\"name\":\"Contemporary neurology series\",\"volume\":\"12 \",\"pages\":\"165-258\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1975-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contemporary neurology series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary neurology series","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于临床神经学家来说,海洋作为有毒物质来源的概念可能并不熟悉,因为标准教科书中缺乏对这些物质的参考。化学、生理和药理学实验室正在越来越多地研究海洋毒素的特性,发现它们具有有趣和新颖的结构或不寻常的生理作用的化合物。这些物质被视为生物学研究,特别是生理学研究的可能试剂,以及新药的可能来源。这些药物包括激素样物质和抗病毒或抗肿瘤药物。尽管这些专门的发展在很大程度上是本世纪技术进步的结果,临床医生有时还是直接与海洋有毒物质的影响有关。例如,在日本,河豚或河豚中毒是食物中毒死亡的主要原因之一。另一种海洋毒素引起了许多爆炸性的食物中毒。世界各地有很多人死于蛤蜊或贻贝。这种毒素,即蛤蚌毒素,是由包括Gonyaulax在内的各种海洋原生动物产生的,并集中在滤食性软体动物中。早在二十世纪的技术发展之前,这两个例子就引起了医学界的极大兴趣。在过去的几十年里,由于在海洋中处置工业废料造成海洋污染,出现了全新的海洋中毒问题。人为海洋中毒最显著的例子是水俣病的爆发。在日本的水俣,一家塑料厂将受汞污染的工业废物排入一个封闭的海湾,随后人类食用了受污染的鱼类、螃蟹或贝类,导致了许多急性脑退化的病例。随着20世纪下半叶为娱乐和经济开发而越来越多地探索海洋,可以预期,人类因海洋生物中毒的频率和种类将会增加。本章综述了海洋生物来源的有毒物质对神经系统的影响。这门学科现在发展得如此迅速,像这样对海洋中一般动物生活的全面调查,很快就会超出一次综述的范围。尽管如此,希望所提供的参考资料将使感兴趣的读者能够进一步研究特定方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The neurologic effects of noxious marine creatures.

The concept of the sea as a source of noxious agents is perhaps not a familiar one to clinical neurologists, judging by the lack of reference to these agents in standard textbooks. Chemical, physiologic, and pharmacologic laboratories are increasingly investigating the properties of marine toxins, finding in them compounds with interesting and novel structures or unusual physiologic effects. Such substances are seen as possible agents for biologic and, more particularly, physiologic research, and as possible sources of new pharmaceuticals. These include hormone-like substances and antiviral or antitumor agents. Despite these specialized developments, which are in large measure a consequence of the technological advances of the present century, the clinician is at times directly concerned with the effects of marine toxic substances. For example, in Japan, puffer fish or tetrodotoxic poisoning is one of the major causes of deaths from food poisoning. Another marine toxin that has caused many explosive outbreaks of food poisoning. with many deaths in various parts of the world, comes from clams or mussels. This toxin, saxitoxin, is produced by species of marine protozoa including Gonyaulax, and is concentrated in filter-feeding molluscs. These two examples were of significant interest in medicine long before the technologic developments of the twentieth century. In the last few decades, entirely new problems of marine intoxication have arisen as a result of marine pollution from the disposal of industrial wastes in the sea. The most striking example of a man-made marine intoxication has been the outbreak of Minamata disease. In Minamata, Japan, the disposal of mercury-contaminated industrial wastes from a plastics factory into an enclosed bay, followed by human consumption of the contaminated fishes, crabs, or shellfish, led to many instances of acute cerebral degeneration. With the increasing exploration of the sea for both pleasure and economic exploitation, which is a feature of the second half of the twentieth century, it may be expected that the frequency and variety of human intoxications by marine creatures will be increased. This chapter reviews the neurologic effects of noxious substances of marine biologic origin. The subject is now developing so rapidly that overall surveys, such as this, of the general animal life of theocens will soon be beyond the scope of a single review. Nevertheless, it is hoped that the references given will enable the interested reader to pursue particular aspects further.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信