轴承故障诊断的神经网络方法

R. Guo, Guangyuan Xu, Zhenyu Yin, Jiong Li, Feiqing Zhang
{"title":"轴承故障诊断的神经网络方法","authors":"R. Guo, Guangyuan Xu, Zhenyu Yin, Jiong Li, Feiqing Zhang","doi":"10.1109/ICCC56324.2022.10065697","DOIUrl":null,"url":null,"abstract":"To solve the problem of low accuracy of rolling bearing fault diagnosis under complex noise and variable load conditions, this paper proposes a neural network based solution SSRNet. First, the rolling bearing signal is preprocessed by short-time Fourier transform, and the model structure and residual structure of the neural network are adjusted, and LeakyReLU function is integrated into it. The accuracy of rolling bearing fault diagnosis is improved under the condition of complex noise and variable load. At the same time, the data set of Case Western Reserve University is used for experimental verification. In the SNR of - 4dB, the SSRNet model proposed in this paper can achieve 97.11% accuracy and has better performance than the existing methods.","PeriodicalId":263098,"journal":{"name":"2022 IEEE 8th International Conference on Computer and Communications (ICCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Neural Network Method for Bearing Fault Diagnosis\",\"authors\":\"R. Guo, Guangyuan Xu, Zhenyu Yin, Jiong Li, Feiqing Zhang\",\"doi\":\"10.1109/ICCC56324.2022.10065697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To solve the problem of low accuracy of rolling bearing fault diagnosis under complex noise and variable load conditions, this paper proposes a neural network based solution SSRNet. First, the rolling bearing signal is preprocessed by short-time Fourier transform, and the model structure and residual structure of the neural network are adjusted, and LeakyReLU function is integrated into it. The accuracy of rolling bearing fault diagnosis is improved under the condition of complex noise and variable load. At the same time, the data set of Case Western Reserve University is used for experimental verification. In the SNR of - 4dB, the SSRNet model proposed in this paper can achieve 97.11% accuracy and has better performance than the existing methods.\",\"PeriodicalId\":263098,\"journal\":{\"name\":\"2022 IEEE 8th International Conference on Computer and Communications (ICCC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 8th International Conference on Computer and Communications (ICCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCC56324.2022.10065697\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 8th International Conference on Computer and Communications (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCC56324.2022.10065697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对复杂噪声和变载荷条件下滚动轴承故障诊断精度低的问题,提出了一种基于神经网络的SSRNet方法。首先,对滚动轴承信号进行短时傅里叶变换预处理,调整神经网络的模型结构和残差结构,并将LeakyReLU函数融入其中;在复杂噪声和变载荷条件下,提高了滚动轴承故障诊断的准确性。同时利用凯斯西储大学的数据集进行实验验证。在信噪比为- 4dB的情况下,本文提出的SSRNet模型准确率达到97.11%,性能优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Neural Network Method for Bearing Fault Diagnosis
To solve the problem of low accuracy of rolling bearing fault diagnosis under complex noise and variable load conditions, this paper proposes a neural network based solution SSRNet. First, the rolling bearing signal is preprocessed by short-time Fourier transform, and the model structure and residual structure of the neural network are adjusted, and LeakyReLU function is integrated into it. The accuracy of rolling bearing fault diagnosis is improved under the condition of complex noise and variable load. At the same time, the data set of Case Western Reserve University is used for experimental verification. In the SNR of - 4dB, the SSRNet model proposed in this paper can achieve 97.11% accuracy and has better performance than the existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信