利用声音、面部和语义交流线索检测抑郁

J. Williamson, Elizabeth Godoy, Miriam Cha, Adrianne Schwarzentruber, Pooya Khorrami, Youngjune Gwon, Hsiang-Tsung Kung, Charlie K. Dagli, T. Quatieri
{"title":"利用声音、面部和语义交流线索检测抑郁","authors":"J. Williamson, Elizabeth Godoy, Miriam Cha, Adrianne Schwarzentruber, Pooya Khorrami, Youngjune Gwon, Hsiang-Tsung Kung, Charlie K. Dagli, T. Quatieri","doi":"10.1145/2988257.2988263","DOIUrl":null,"url":null,"abstract":"Major depressive disorder (MDD) is known to result in neurophysiological and neurocognitive changes that affect control of motor, linguistic, and cognitive functions. MDD's impact on these processes is reflected in an individual's communication via coupled mechanisms: vocal articulation, facial gesturing and choice of content to convey in a dialogue. In particular, MDD-induced neurophysiological changes are associated with a decline in dynamics and coordination of speech and facial motor control, while neurocognitive changes influence dialogue semantics. In this paper, biomarkers are derived from all of these modalities, drawing first from previously developed neurophysiologically-motivated speech and facial coordination and timing features. In addition, a novel indicator of lower vocal tract constriction in articulation is incorporated that relates to vocal projection. Semantic features are analyzed for subject/avatar dialogue content using a sparse coded lexical embedding space, and for contextual clues related to the subject's present or past depression status. The features and depression classification system were developed for the 6th International Audio/Video Emotion Challenge (AVEC), which provides data consisting of audio, video-based facial action units, and transcribed text of individuals communicating with the human-controlled avatar. A clinical Patient Health Questionnaire (PHQ) score and binary depression decision are provided for each participant. PHQ predictions were obtained by fusing outputs from a Gaussian staircase regressor for each feature set, with results on the development set of mean F1=0.81, RMSE=5.31, and MAE=3.34. These compare favorably to the challenge baseline development results of mean F1=0.73, RMSE=6.62, and MAE=5.52. On test set evaluation, our system obtained a mean F1=0.70, which is similar to the challenge baseline test result. Future work calls for consideration of joint feature analyses across modalities in an effort to detect neurological disorders based on the interplay of motor, linguistic, affective, and cognitive components of communication.","PeriodicalId":432793,"journal":{"name":"Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge","volume":"501 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"136","resultStr":"{\"title\":\"Detecting Depression using Vocal, Facial and Semantic Communication Cues\",\"authors\":\"J. Williamson, Elizabeth Godoy, Miriam Cha, Adrianne Schwarzentruber, Pooya Khorrami, Youngjune Gwon, Hsiang-Tsung Kung, Charlie K. Dagli, T. Quatieri\",\"doi\":\"10.1145/2988257.2988263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Major depressive disorder (MDD) is known to result in neurophysiological and neurocognitive changes that affect control of motor, linguistic, and cognitive functions. MDD's impact on these processes is reflected in an individual's communication via coupled mechanisms: vocal articulation, facial gesturing and choice of content to convey in a dialogue. In particular, MDD-induced neurophysiological changes are associated with a decline in dynamics and coordination of speech and facial motor control, while neurocognitive changes influence dialogue semantics. In this paper, biomarkers are derived from all of these modalities, drawing first from previously developed neurophysiologically-motivated speech and facial coordination and timing features. In addition, a novel indicator of lower vocal tract constriction in articulation is incorporated that relates to vocal projection. Semantic features are analyzed for subject/avatar dialogue content using a sparse coded lexical embedding space, and for contextual clues related to the subject's present or past depression status. The features and depression classification system were developed for the 6th International Audio/Video Emotion Challenge (AVEC), which provides data consisting of audio, video-based facial action units, and transcribed text of individuals communicating with the human-controlled avatar. A clinical Patient Health Questionnaire (PHQ) score and binary depression decision are provided for each participant. PHQ predictions were obtained by fusing outputs from a Gaussian staircase regressor for each feature set, with results on the development set of mean F1=0.81, RMSE=5.31, and MAE=3.34. These compare favorably to the challenge baseline development results of mean F1=0.73, RMSE=6.62, and MAE=5.52. On test set evaluation, our system obtained a mean F1=0.70, which is similar to the challenge baseline test result. Future work calls for consideration of joint feature analyses across modalities in an effort to detect neurological disorders based on the interplay of motor, linguistic, affective, and cognitive components of communication.\",\"PeriodicalId\":432793,\"journal\":{\"name\":\"Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge\",\"volume\":\"501 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"136\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2988257.2988263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2988257.2988263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 136

摘要

已知重度抑郁症(MDD)会导致神经生理和神经认知改变,影响运动、语言和认知功能的控制。MDD对这些过程的影响通过耦合机制反映在个人的交流中:声音清晰度,面部手势和对话中传达内容的选择。特别是,mdd引起的神经生理变化与言语和面部运动控制的动力学和协调性下降有关,而神经认知变化影响对话语义。在本文中,生物标志物来源于所有这些模式,首先从先前开发的神经生理学动机的语言和面部协调和时间特征中提取。此外,一个新的指标,下声道收缩的发音纳入,涉及到声音投射。使用稀疏编码的词汇嵌入空间分析主题/化身对话内容的语义特征,以及与主题当前或过去抑郁状态相关的上下文线索。特征和抑郁分类系统是为第六届国际音频/视频情感挑战赛(AVEC)开发的,它提供的数据包括音频、基于视频的面部动作单元,以及与人类控制的虚拟形象交流的个人的转录文本。临床患者健康问卷(PHQ)评分和二元抑郁判定提供给每个参与者。PHQ预测是通过融合每个特征集的高斯阶梯回归量的输出来获得的,发展集的结果均值F1=0.81, RMSE=5.31, MAE=3.34。这些结果与挑战基线发展结果(平均F1=0.73, RMSE=6.62, MAE=5.52)比较有利。在测试集评估中,我们的系统获得了一个平均F1=0.70,这与挑战基线测试结果相似。未来的工作需要考虑跨模式的联合特征分析,以检测基于运动、语言、情感和认知交流成分相互作用的神经系统疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting Depression using Vocal, Facial and Semantic Communication Cues
Major depressive disorder (MDD) is known to result in neurophysiological and neurocognitive changes that affect control of motor, linguistic, and cognitive functions. MDD's impact on these processes is reflected in an individual's communication via coupled mechanisms: vocal articulation, facial gesturing and choice of content to convey in a dialogue. In particular, MDD-induced neurophysiological changes are associated with a decline in dynamics and coordination of speech and facial motor control, while neurocognitive changes influence dialogue semantics. In this paper, biomarkers are derived from all of these modalities, drawing first from previously developed neurophysiologically-motivated speech and facial coordination and timing features. In addition, a novel indicator of lower vocal tract constriction in articulation is incorporated that relates to vocal projection. Semantic features are analyzed for subject/avatar dialogue content using a sparse coded lexical embedding space, and for contextual clues related to the subject's present or past depression status. The features and depression classification system were developed for the 6th International Audio/Video Emotion Challenge (AVEC), which provides data consisting of audio, video-based facial action units, and transcribed text of individuals communicating with the human-controlled avatar. A clinical Patient Health Questionnaire (PHQ) score and binary depression decision are provided for each participant. PHQ predictions were obtained by fusing outputs from a Gaussian staircase regressor for each feature set, with results on the development set of mean F1=0.81, RMSE=5.31, and MAE=3.34. These compare favorably to the challenge baseline development results of mean F1=0.73, RMSE=6.62, and MAE=5.52. On test set evaluation, our system obtained a mean F1=0.70, which is similar to the challenge baseline test result. Future work calls for consideration of joint feature analyses across modalities in an effort to detect neurological disorders based on the interplay of motor, linguistic, affective, and cognitive components of communication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信