{"title":"盲目去模糊和反卷积","authors":"T. Schulz","doi":"10.1364/srs.1995.rwa1","DOIUrl":null,"url":null,"abstract":"Many imaging systems in use today acquire data that are related to a desired object function f(·) through the linear relationship where h(·,·; θ) is the point-spread function for the imaging system, and θ is a collection of system parameters – some or all of which may be unknown – that characterize the system and, hence, its point-spread function. In some situations, only a small number of parameters might be required for the characterization of the system, whereas in other situations, the parameters that characterize the system might be made up of the point-spread function’s point-by-point values for all x and y of interest.","PeriodicalId":184407,"journal":{"name":"Signal Recovery and Synthesis","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blind Deblurring and Deconvolution\",\"authors\":\"T. Schulz\",\"doi\":\"10.1364/srs.1995.rwa1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many imaging systems in use today acquire data that are related to a desired object function f(·) through the linear relationship where h(·,·; θ) is the point-spread function for the imaging system, and θ is a collection of system parameters – some or all of which may be unknown – that characterize the system and, hence, its point-spread function. In some situations, only a small number of parameters might be required for the characterization of the system, whereas in other situations, the parameters that characterize the system might be made up of the point-spread function’s point-by-point values for all x and y of interest.\",\"PeriodicalId\":184407,\"journal\":{\"name\":\"Signal Recovery and Synthesis\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Recovery and Synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/srs.1995.rwa1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Recovery and Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/srs.1995.rwa1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Many imaging systems in use today acquire data that are related to a desired object function f(·) through the linear relationship where h(·,·; θ) is the point-spread function for the imaging system, and θ is a collection of system parameters – some or all of which may be unknown – that characterize the system and, hence, its point-spread function. In some situations, only a small number of parameters might be required for the characterization of the system, whereas in other situations, the parameters that characterize the system might be made up of the point-spread function’s point-by-point values for all x and y of interest.