Razvan Andonie, L. Fabry-Asztalos, Catharine Collar, Sarah Abdul-Wahid, N. Salim
{"title":"HIV-1蛋白酶抑制剂生物活性的神经模糊预测及规则提取","authors":"Razvan Andonie, L. Fabry-Asztalos, Catharine Collar, Sarah Abdul-Wahid, N. Salim","doi":"10.1109/CIBCB.2005.1594906","DOIUrl":null,"url":null,"abstract":"A fuzzy neural network (FNN) and multiple linear regression (MLR) were used to predict biological activities of 26 newly designed HIV-1 protease potential inhibitory compounds. Molecular descriptors of 151 known inhibitors were used to train and test the FNN and to develop MLR models. The predictive ability of these two models was investigated and compared. We found the predictive ability of the FNN to be generally superior to that of MLR. The fuzzy IF/THEN rules were extracted from the trained network. These rules map chemical structure descriptors to predicted inhibitory values. The obtained rules can be used to analyze the influence of descriptors. Our results indicate that FNN and fuzzy IF/THEN rules are powerful modeling tools for QSAR studies.","PeriodicalId":330810,"journal":{"name":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Neuro-fuzzy Prediction of Biological Activity and Rule Extraction for HIV-1 Protease Inhibitors\",\"authors\":\"Razvan Andonie, L. Fabry-Asztalos, Catharine Collar, Sarah Abdul-Wahid, N. Salim\",\"doi\":\"10.1109/CIBCB.2005.1594906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fuzzy neural network (FNN) and multiple linear regression (MLR) were used to predict biological activities of 26 newly designed HIV-1 protease potential inhibitory compounds. Molecular descriptors of 151 known inhibitors were used to train and test the FNN and to develop MLR models. The predictive ability of these two models was investigated and compared. We found the predictive ability of the FNN to be generally superior to that of MLR. The fuzzy IF/THEN rules were extracted from the trained network. These rules map chemical structure descriptors to predicted inhibitory values. The obtained rules can be used to analyze the influence of descriptors. Our results indicate that FNN and fuzzy IF/THEN rules are powerful modeling tools for QSAR studies.\",\"PeriodicalId\":330810,\"journal\":{\"name\":\"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"volume\":\"121 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBCB.2005.1594906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2005.1594906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Neuro-fuzzy Prediction of Biological Activity and Rule Extraction for HIV-1 Protease Inhibitors
A fuzzy neural network (FNN) and multiple linear regression (MLR) were used to predict biological activities of 26 newly designed HIV-1 protease potential inhibitory compounds. Molecular descriptors of 151 known inhibitors were used to train and test the FNN and to develop MLR models. The predictive ability of these two models was investigated and compared. We found the predictive ability of the FNN to be generally superior to that of MLR. The fuzzy IF/THEN rules were extracted from the trained network. These rules map chemical structure descriptors to predicted inhibitory values. The obtained rules can be used to analyze the influence of descriptors. Our results indicate that FNN and fuzzy IF/THEN rules are powerful modeling tools for QSAR studies.