LeanSpeech:微软轻量级语音合成系统的极限挑战赛2023

Chen Zhang, Shubham Bansal, Aakash Lakhera, Jinzhu Li, G. Wang, Sandeepkumar Satpal, Sheng Zhao, Lei He
{"title":"LeanSpeech:微软轻量级语音合成系统的极限挑战赛2023","authors":"Chen Zhang, Shubham Bansal, Aakash Lakhera, Jinzhu Li, G. Wang, Sandeepkumar Satpal, Sheng Zhao, Lei He","doi":"10.1109/ICASSP49357.2023.10096039","DOIUrl":null,"url":null,"abstract":"This paper describes the Microsoft Text-to-Speech (TTS) system: LeanSpeech for LIMMITS (Lightweight, Multi-speaker, Multi-lingual Indic TTS) Challenge 20231, which is part of ICASSP2023 to encourage the advance of TTS in Indian Languages. We propose a lightweight encoder-decoder acoustic model composed of 1-D convolution and LSTM blocks, which is trained with knowledge distillation from a multi-speaker multi-lingual teacher model, DelightfulTTS [1]. The speech corpus is reprocessed and used in both AM training and vocoder fine-tuning. In Track-2 of the challenge, our system achieves MOS 4.56 and SMOS 3.98, which indicates the efficiency of the proposed model and training strategy.","PeriodicalId":113072,"journal":{"name":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LeanSpeech: The Microsoft Lightweight Speech Synthesis System for Limmits Challenge 2023\",\"authors\":\"Chen Zhang, Shubham Bansal, Aakash Lakhera, Jinzhu Li, G. Wang, Sandeepkumar Satpal, Sheng Zhao, Lei He\",\"doi\":\"10.1109/ICASSP49357.2023.10096039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the Microsoft Text-to-Speech (TTS) system: LeanSpeech for LIMMITS (Lightweight, Multi-speaker, Multi-lingual Indic TTS) Challenge 20231, which is part of ICASSP2023 to encourage the advance of TTS in Indian Languages. We propose a lightweight encoder-decoder acoustic model composed of 1-D convolution and LSTM blocks, which is trained with knowledge distillation from a multi-speaker multi-lingual teacher model, DelightfulTTS [1]. The speech corpus is reprocessed and used in both AM training and vocoder fine-tuning. In Track-2 of the challenge, our system achieves MOS 4.56 and SMOS 3.98, which indicates the efficiency of the proposed model and training strategy.\",\"PeriodicalId\":113072,\"journal\":{\"name\":\"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP49357.2023.10096039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP49357.2023.10096039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了微软文本到语音(TTS)系统:LeanSpeech for LIMMITS(轻量级,多扬声器,多语言印度TTS)挑战20231,这是ICASSP2023的一部分,旨在鼓励印度语言TTS的进步。我们提出了一个轻量级的编码器-解码器声学模型,该模型由一维卷积和LSTM块组成,该模型使用来自多说话多语言教师模型DelightfulTTS[1]的知识蒸馏进行训练。语音语料库被重新处理并用于AM训练和声码器微调。在Track-2中,我们的系统达到了SMOS 4.56和SMOS 3.98,表明了所提出的模型和训练策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LeanSpeech: The Microsoft Lightweight Speech Synthesis System for Limmits Challenge 2023
This paper describes the Microsoft Text-to-Speech (TTS) system: LeanSpeech for LIMMITS (Lightweight, Multi-speaker, Multi-lingual Indic TTS) Challenge 20231, which is part of ICASSP2023 to encourage the advance of TTS in Indian Languages. We propose a lightweight encoder-decoder acoustic model composed of 1-D convolution and LSTM blocks, which is trained with knowledge distillation from a multi-speaker multi-lingual teacher model, DelightfulTTS [1]. The speech corpus is reprocessed and used in both AM training and vocoder fine-tuning. In Track-2 of the challenge, our system achieves MOS 4.56 and SMOS 3.98, which indicates the efficiency of the proposed model and training strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信