基于秩损失的表征学习鲁棒性神经外科技能评估

Britty Baby, Mustafa Chasmai, Tamajit Banerjee, A. Suri, Subhashis Banerjee, Chetan Arora
{"title":"基于秩损失的表征学习鲁棒性神经外科技能评估","authors":"Britty Baby, Mustafa Chasmai, Tamajit Banerjee, A. Suri, Subhashis Banerjee, Chetan Arora","doi":"10.1109/ICIP46576.2022.9897932","DOIUrl":null,"url":null,"abstract":"Surgical simulators provide hands-on training and learning of the necessary psychomotor skills. Automated skill evaluation of the trainee doctors based on the video of a task being performed by them is an important key step for the optimal utilization of such simulators. However, current skill evaluation techniques require accurate tracking information of the instruments which restricts their applicability to robot assisted surgeries only. In this paper, we propose a novel neural network architecture that can perform skill evaluation using video data alone (and no tracking information). Given the small dataset available for training such a system, the network trained using ℓ2 regression loss easily overfits the training data. We propose a novel rank loss to help learn robust representation, leading to 5% improvement for skill score prediction on the benchmark JIGSAWS dataset. To demonstrate the applicability of our method on non-robotic surgeries, we contribute a new neuro-endoscopic technical skills (NETS) training dataset comprising of 100 short videos of 12 subjects. Our method achieved 27% improvement over the state of the art on the NETS dataset. Project page with source code, and data is available at nets-iitd.github.io/nets-v1.","PeriodicalId":387035,"journal":{"name":"2022 IEEE International Conference on Image Processing (ICIP)","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Representation Learning Using Rank Loss for Robust Neurosurgical Skills Evaluation\",\"authors\":\"Britty Baby, Mustafa Chasmai, Tamajit Banerjee, A. Suri, Subhashis Banerjee, Chetan Arora\",\"doi\":\"10.1109/ICIP46576.2022.9897932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surgical simulators provide hands-on training and learning of the necessary psychomotor skills. Automated skill evaluation of the trainee doctors based on the video of a task being performed by them is an important key step for the optimal utilization of such simulators. However, current skill evaluation techniques require accurate tracking information of the instruments which restricts their applicability to robot assisted surgeries only. In this paper, we propose a novel neural network architecture that can perform skill evaluation using video data alone (and no tracking information). Given the small dataset available for training such a system, the network trained using ℓ2 regression loss easily overfits the training data. We propose a novel rank loss to help learn robust representation, leading to 5% improvement for skill score prediction on the benchmark JIGSAWS dataset. To demonstrate the applicability of our method on non-robotic surgeries, we contribute a new neuro-endoscopic technical skills (NETS) training dataset comprising of 100 short videos of 12 subjects. Our method achieved 27% improvement over the state of the art on the NETS dataset. Project page with source code, and data is available at nets-iitd.github.io/nets-v1.\",\"PeriodicalId\":387035,\"journal\":{\"name\":\"2022 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"131 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP46576.2022.9897932\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP46576.2022.9897932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

手术模拟器提供了动手训练和必要的精神运动技能的学习。基于实习医生执行任务的视频对其进行自动技能评估是优化利用此类模拟器的重要关键步骤。然而,目前的技能评估技术需要准确的器械跟踪信息,这限制了它们仅适用于机器人辅助手术。在本文中,我们提出了一种新的神经网络架构,可以仅使用视频数据(而不使用跟踪信息)进行技能评估。考虑到可用于训练这样一个系统的数据集很小,使用l2回归损失训练的网络很容易过拟合训练数据。我们提出了一种新的秩损失来帮助学习鲁棒表示,从而使基准JIGSAWS数据集的技能分数预测提高了5%。为了证明我们的方法在非机器人手术中的适用性,我们提供了一个新的神经内窥镜技术技能(NETS)训练数据集,其中包括12个主题的100个短视频。我们的方法在net数据集上实现了27%的改进。项目页面的源代码,和数据可在nets-iit.github.io /nets-v1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Representation Learning Using Rank Loss for Robust Neurosurgical Skills Evaluation
Surgical simulators provide hands-on training and learning of the necessary psychomotor skills. Automated skill evaluation of the trainee doctors based on the video of a task being performed by them is an important key step for the optimal utilization of such simulators. However, current skill evaluation techniques require accurate tracking information of the instruments which restricts their applicability to robot assisted surgeries only. In this paper, we propose a novel neural network architecture that can perform skill evaluation using video data alone (and no tracking information). Given the small dataset available for training such a system, the network trained using ℓ2 regression loss easily overfits the training data. We propose a novel rank loss to help learn robust representation, leading to 5% improvement for skill score prediction on the benchmark JIGSAWS dataset. To demonstrate the applicability of our method on non-robotic surgeries, we contribute a new neuro-endoscopic technical skills (NETS) training dataset comprising of 100 short videos of 12 subjects. Our method achieved 27% improvement over the state of the art on the NETS dataset. Project page with source code, and data is available at nets-iitd.github.io/nets-v1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信