三维医学图像分割的活动体模型

Tian Shen, Hongsheng Li, Z. Qian, Xiaolei Huang
{"title":"三维医学图像分割的活动体模型","authors":"Tian Shen, Hongsheng Li, Z. Qian, Xiaolei Huang","doi":"10.1109/CVPR.2009.5206563","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel predictive model for object boundary, which can integrate information from any sources. The model is a dynamic “object” model whose manifestation includes a deformable surface representing shape, a volumetric interior carrying appearance statistics, and an embedded classifier that separates object from background based on current feature information. Unlike Snakes, Level Set, Graph Cut, MRF and CRF approaches, the model is “self-contained” in that it does not model the background, but rather focuses on an accurate representation of the foreground object's attributes. As we will show, however, the model is capable of reasoning about the background statistics thus can detect when is change sufficient to invoke a boundary decision. The shape of the 3D model is considered as an elastic solid, with a simplex-mesh (i.e. finite element triangulation) surface made of thousands of vertices. Deformations of the model are derived from a linear system that encodes external forces from the boundary of a Region of Interest (ROI), which is a binary mask representing the object region predicted by the current model. Efficient optimization and fast convergence of the model are achieved using the Finite Element Method (FEM). Other advantages of the model include the ease of dealing with topology changes and its ability to incorporate human interactions. Segmentation and validation results are presented for experiments on noisy 3D medical images.","PeriodicalId":386532,"journal":{"name":"2009 IEEE Conference on Computer Vision and Pattern Recognition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Active volume models for 3D medical image segmentation\",\"authors\":\"Tian Shen, Hongsheng Li, Z. Qian, Xiaolei Huang\",\"doi\":\"10.1109/CVPR.2009.5206563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel predictive model for object boundary, which can integrate information from any sources. The model is a dynamic “object” model whose manifestation includes a deformable surface representing shape, a volumetric interior carrying appearance statistics, and an embedded classifier that separates object from background based on current feature information. Unlike Snakes, Level Set, Graph Cut, MRF and CRF approaches, the model is “self-contained” in that it does not model the background, but rather focuses on an accurate representation of the foreground object's attributes. As we will show, however, the model is capable of reasoning about the background statistics thus can detect when is change sufficient to invoke a boundary decision. The shape of the 3D model is considered as an elastic solid, with a simplex-mesh (i.e. finite element triangulation) surface made of thousands of vertices. Deformations of the model are derived from a linear system that encodes external forces from the boundary of a Region of Interest (ROI), which is a binary mask representing the object region predicted by the current model. Efficient optimization and fast convergence of the model are achieved using the Finite Element Method (FEM). Other advantages of the model include the ease of dealing with topology changes and its ability to incorporate human interactions. Segmentation and validation results are presented for experiments on noisy 3D medical images.\",\"PeriodicalId\":386532,\"journal\":{\"name\":\"2009 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2009.5206563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2009.5206563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

本文提出了一种新的目标边界预测模型,该模型可以集成任意来源的信息。该模型是一个动态的“对象”模型,其表现形式包括一个表示形状的可变形表面,一个承载外观统计的体积内部,以及一个基于当前特征信息将对象与背景分离的嵌入式分类器。与snake, Level Set, Graph Cut, MRF和CRF方法不同,该模型是“自包含的”,因为它不模拟背景,而是专注于前景对象属性的准确表示。然而,正如我们将展示的那样,该模型能够对背景统计数据进行推理,因此可以检测到何时变化足以调用边界决策。三维模型的形状被认为是一个弹性实体,具有由数千个顶点组成的简单网格(即有限元三角剖分)表面。模型的变形来源于一个线性系统,该系统对来自感兴趣区域(ROI)边界的外力进行编码,感兴趣区域(ROI)是表示当前模型预测的对象区域的二进制掩码。采用有限元法实现了模型的高效优化和快速收敛。该模型的其他优点包括易于处理拓扑变化,以及能够整合人类交互。给出了对带有噪声的三维医学图像的分割和验证实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Active volume models for 3D medical image segmentation
In this paper, we propose a novel predictive model for object boundary, which can integrate information from any sources. The model is a dynamic “object” model whose manifestation includes a deformable surface representing shape, a volumetric interior carrying appearance statistics, and an embedded classifier that separates object from background based on current feature information. Unlike Snakes, Level Set, Graph Cut, MRF and CRF approaches, the model is “self-contained” in that it does not model the background, but rather focuses on an accurate representation of the foreground object's attributes. As we will show, however, the model is capable of reasoning about the background statistics thus can detect when is change sufficient to invoke a boundary decision. The shape of the 3D model is considered as an elastic solid, with a simplex-mesh (i.e. finite element triangulation) surface made of thousands of vertices. Deformations of the model are derived from a linear system that encodes external forces from the boundary of a Region of Interest (ROI), which is a binary mask representing the object region predicted by the current model. Efficient optimization and fast convergence of the model are achieved using the Finite Element Method (FEM). Other advantages of the model include the ease of dealing with topology changes and its ability to incorporate human interactions. Segmentation and validation results are presented for experiments on noisy 3D medical images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信