基于机器学习的车辆队列安全区域识别

A. Fermi, M. Mongelli, M. Muselli, Enrico Ferrari
{"title":"基于机器学习的车辆队列安全区域识别","authors":"A. Fermi, M. Mongelli, M. Muselli, Enrico Ferrari","doi":"10.1109/WFCS.2018.8402372","DOIUrl":null,"url":null,"abstract":"The paper introduces the use of machine learning with rule generation to validate collision avoidance in vehicle platooning. Cooperative Adaptive Cruise Control is under test over a range of system parameters including speed and distance of the vehicles as well as packet error rate of the communication channel. Safety regions are evidenced on test data with statistical error very close to zero.","PeriodicalId":350991,"journal":{"name":"2018 14th IEEE International Workshop on Factory Communication Systems (WFCS)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Identification of safety regions in vehicle platooning via machine learning\",\"authors\":\"A. Fermi, M. Mongelli, M. Muselli, Enrico Ferrari\",\"doi\":\"10.1109/WFCS.2018.8402372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper introduces the use of machine learning with rule generation to validate collision avoidance in vehicle platooning. Cooperative Adaptive Cruise Control is under test over a range of system parameters including speed and distance of the vehicles as well as packet error rate of the communication channel. Safety regions are evidenced on test data with statistical error very close to zero.\",\"PeriodicalId\":350991,\"journal\":{\"name\":\"2018 14th IEEE International Workshop on Factory Communication Systems (WFCS)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 14th IEEE International Workshop on Factory Communication Systems (WFCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WFCS.2018.8402372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th IEEE International Workshop on Factory Communication Systems (WFCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WFCS.2018.8402372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文介绍了使用机器学习和规则生成来验证车辆队列中的碰撞避免。合作自适应巡航控制系统正在测试一系列系统参数,包括车辆的速度和距离以及通信信道的数据包错误率。安全区域在测试数据上得到证明,统计误差非常接近于零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of safety regions in vehicle platooning via machine learning
The paper introduces the use of machine learning with rule generation to validate collision avoidance in vehicle platooning. Cooperative Adaptive Cruise Control is under test over a range of system parameters including speed and distance of the vehicles as well as packet error rate of the communication channel. Safety regions are evidenced on test data with statistical error very close to zero.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信