关于缩放和规则变化

N. Bingham
{"title":"关于缩放和规则变化","authors":"N. Bingham","doi":"10.2298/PIM140202002B","DOIUrl":null,"url":null,"abstract":"We survey scaling arguments, both asymptotic (involving regular variation) and exact (involving self-similarity), in various areas of mathemat- ical analysis and mathematical physics. 1. Scaling and Fechner's law There is a sizeable body of theory to the effect that, where two related physically meaningful functions f and g have no natural scale in which to measure their units, and are reasonably smooth, then their relationship is given by a power law: (F)","PeriodicalId":416273,"journal":{"name":"Publications De L'institut Mathematique","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"ON SCALING AND REGULAR VARIATION\",\"authors\":\"N. Bingham\",\"doi\":\"10.2298/PIM140202002B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We survey scaling arguments, both asymptotic (involving regular variation) and exact (involving self-similarity), in various areas of mathemat- ical analysis and mathematical physics. 1. Scaling and Fechner's law There is a sizeable body of theory to the effect that, where two related physically meaningful functions f and g have no natural scale in which to measure their units, and are reasonably smooth, then their relationship is given by a power law: (F)\",\"PeriodicalId\":416273,\"journal\":{\"name\":\"Publications De L'institut Mathematique\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications De L'institut Mathematique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/PIM140202002B\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications De L'institut Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/PIM140202002B","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们在数学分析和数学物理的各个领域调查了尺度论证,包括渐近(涉及正则变化)和精确(涉及自相似)。1. 有相当多的理论认为,如果两个相关的有物理意义的函数f和g没有自然的尺度来衡量它们的单位,并且相当平滑,那么它们的关系由幂律给出:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON SCALING AND REGULAR VARIATION
We survey scaling arguments, both asymptotic (involving regular variation) and exact (involving self-similarity), in various areas of mathemat- ical analysis and mathematical physics. 1. Scaling and Fechner's law There is a sizeable body of theory to the effect that, where two related physically meaningful functions f and g have no natural scale in which to measure their units, and are reasonably smooth, then their relationship is given by a power law: (F)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信