基于卷积神经网络的平假名汉字手写识别

Ari Hilda Mawaddah, Christy Atika Sari, De Rosal Ignatius Moses Setiadi, Eko Hari Rachmawanto
{"title":"基于卷积神经网络的平假名汉字手写识别","authors":"Ari Hilda Mawaddah, Christy Atika Sari, De Rosal Ignatius Moses Setiadi, Eko Hari Rachmawanto","doi":"10.1109/iSemantic50169.2020.9234211","DOIUrl":null,"url":null,"abstract":"Hiragana is one of the basic types of letters used in Japanese writing. This research proposes the method of recognizing Hiragana's writing characters using the Convolutional Neural Network (CNN) method. At the preprocessing stage, the segmentation process is carried out using the thresholding method to segment, followed by the process of noise removal, resize, and cropping for image normalization. In the CNN training process, maxpooling methods and danse functions are used for the fully connected process. Whereas in the testing phase the accuracy of using the Adam Optimizer tool. By using 1000 image datasets consisting of 50 characters, each with 50 samples, and with a composition of 950 training data and 50 testing data, the accuracy is 95%. This proves that the CNN method has a good performance for Hiragana character recognition.","PeriodicalId":345558,"journal":{"name":"2020 International Seminar on Application for Technology of Information and Communication (iSemantic)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Handwriting Recognition of Hiragana Characters using Convolutional Neural Network\",\"authors\":\"Ari Hilda Mawaddah, Christy Atika Sari, De Rosal Ignatius Moses Setiadi, Eko Hari Rachmawanto\",\"doi\":\"10.1109/iSemantic50169.2020.9234211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hiragana is one of the basic types of letters used in Japanese writing. This research proposes the method of recognizing Hiragana's writing characters using the Convolutional Neural Network (CNN) method. At the preprocessing stage, the segmentation process is carried out using the thresholding method to segment, followed by the process of noise removal, resize, and cropping for image normalization. In the CNN training process, maxpooling methods and danse functions are used for the fully connected process. Whereas in the testing phase the accuracy of using the Adam Optimizer tool. By using 1000 image datasets consisting of 50 characters, each with 50 samples, and with a composition of 950 training data and 50 testing data, the accuracy is 95%. This proves that the CNN method has a good performance for Hiragana character recognition.\",\"PeriodicalId\":345558,\"journal\":{\"name\":\"2020 International Seminar on Application for Technology of Information and Communication (iSemantic)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Seminar on Application for Technology of Information and Communication (iSemantic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iSemantic50169.2020.9234211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Seminar on Application for Technology of Information and Communication (iSemantic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSemantic50169.2020.9234211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

平假名是日语写作中使用的基本字母类型之一。本研究提出了一种基于卷积神经网络(CNN)的平假名文字识别方法。在预处理阶段,使用阈值分割法进行分割,然后进行去噪、调整大小、裁剪等过程进行图像归一化。在CNN训练过程中,对全连接过程使用了maxpooling方法和dance函数。而在测试阶段,使用Adam Optimizer工具的准确性。使用1000个50个字符的图像数据集,每个数据集有50个样本,由950个训练数据和50个测试数据组成,准确率为95%。这证明了CNN方法对于平假名字符识别具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Handwriting Recognition of Hiragana Characters using Convolutional Neural Network
Hiragana is one of the basic types of letters used in Japanese writing. This research proposes the method of recognizing Hiragana's writing characters using the Convolutional Neural Network (CNN) method. At the preprocessing stage, the segmentation process is carried out using the thresholding method to segment, followed by the process of noise removal, resize, and cropping for image normalization. In the CNN training process, maxpooling methods and danse functions are used for the fully connected process. Whereas in the testing phase the accuracy of using the Adam Optimizer tool. By using 1000 image datasets consisting of 50 characters, each with 50 samples, and with a composition of 950 training data and 50 testing data, the accuracy is 95%. This proves that the CNN method has a good performance for Hiragana character recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信