基于蚁群优化的多项目灵活资源配置项目调度

E. Rokou, Manos Dermitzakis, K. Kirytopoulos
{"title":"基于蚁群优化的多项目灵活资源配置项目调度","authors":"E. Rokou, Manos Dermitzakis, K. Kirytopoulos","doi":"10.1109/IEEM.2014.7058717","DOIUrl":null,"url":null,"abstract":"In today's rapidly evolving management world, the scheduling of multiple projects where each one's execution depends on another's successful completion, is of great importance. This paper presents a hybrid meta-heuristic algorithm composed of an external Genetic Algorithm (GA) and an encapsulated Ant Colony Optimization (ACO) algorithm for the flexible resource constrained multi-project scheduling problem (MPFRCPSP). The proposed idea is grounded on the concept of prioritizing the sub-projects' scheduling based on: a) the number of external (to other sub-projects) relations and b) the resource requirements as compared to the resource shortage for each resource type and each sub-project. The implementation uses the Genetic Algorithm to deal with the classification and prioritization of the projects to be scheduled and the inner ACO algorithm, to perform the activity list optimization for each project. The proposed method was validated using a consistent number of PSP Lib[l] data sets.","PeriodicalId":318405,"journal":{"name":"2014 IEEE International Conference on Industrial Engineering and Engineering Management","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multi-project flexible resource profiles project scheduling with Ant Colony Optimization\",\"authors\":\"E. Rokou, Manos Dermitzakis, K. Kirytopoulos\",\"doi\":\"10.1109/IEEM.2014.7058717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In today's rapidly evolving management world, the scheduling of multiple projects where each one's execution depends on another's successful completion, is of great importance. This paper presents a hybrid meta-heuristic algorithm composed of an external Genetic Algorithm (GA) and an encapsulated Ant Colony Optimization (ACO) algorithm for the flexible resource constrained multi-project scheduling problem (MPFRCPSP). The proposed idea is grounded on the concept of prioritizing the sub-projects' scheduling based on: a) the number of external (to other sub-projects) relations and b) the resource requirements as compared to the resource shortage for each resource type and each sub-project. The implementation uses the Genetic Algorithm to deal with the classification and prioritization of the projects to be scheduled and the inner ACO algorithm, to perform the activity list optimization for each project. The proposed method was validated using a consistent number of PSP Lib[l] data sets.\",\"PeriodicalId\":318405,\"journal\":{\"name\":\"2014 IEEE International Conference on Industrial Engineering and Engineering Management\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Industrial Engineering and Engineering Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEEM.2014.7058717\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Industrial Engineering and Engineering Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEM.2014.7058717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在当今快速发展的管理世界中,多个项目的调度非常重要,其中每个项目的执行取决于另一个项目的成功完成。提出了一种由外部遗传算法(GA)和封装蚁群优化算法(ACO)组成的混合元启发式算法,用于求解资源受限柔性多项目调度问题。所提出的想法基于对子项目调度进行优先排序的概念:a)外部(与其他子项目)关系的数量;b)与每种资源类型和每个子项目的资源短缺相比的资源需求。实现中使用遗传算法对待排项目进行分类和优先级排序,并使用内部蚁群算法对每个项目进行活动列表优化。使用一致数量的PSP Lib[1]数据集验证了所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-project flexible resource profiles project scheduling with Ant Colony Optimization
In today's rapidly evolving management world, the scheduling of multiple projects where each one's execution depends on another's successful completion, is of great importance. This paper presents a hybrid meta-heuristic algorithm composed of an external Genetic Algorithm (GA) and an encapsulated Ant Colony Optimization (ACO) algorithm for the flexible resource constrained multi-project scheduling problem (MPFRCPSP). The proposed idea is grounded on the concept of prioritizing the sub-projects' scheduling based on: a) the number of external (to other sub-projects) relations and b) the resource requirements as compared to the resource shortage for each resource type and each sub-project. The implementation uses the Genetic Algorithm to deal with the classification and prioritization of the projects to be scheduled and the inner ACO algorithm, to perform the activity list optimization for each project. The proposed method was validated using a consistent number of PSP Lib[l] data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信