大型图形可视化的顶点排序算法比较

C. Mueller, Benjamin Martin, A. Lumsdaine
{"title":"大型图形可视化的顶点排序算法比较","authors":"C. Mueller, Benjamin Martin, A. Lumsdaine","doi":"10.1109/APVIS.2007.329289","DOIUrl":null,"url":null,"abstract":"In this study, we examine the use of graph ordering algorithms for visual analysis of data sets using visual similarity matrices. Visual similarity matrices display the relationships between data items in a dot-matrix plot format, with the axes labeled with the data items and points drawn if there is a relationship between two data items. The biggest challenge for displaying data using this representation is finding an ordering of the data items that reveals the internal structure of the data set. Poor orderings are indistinguishable from noise whereas a good ordering can reveal complex and subtle features of the data. We consider three general classes of algorithms for generating orderings: simple graph theoretic algorithms, symbolic sparse matrix reordering algorithms, and spectral decomposition algorithms. We apply each algorithm to synthetic and real world data sets and evaluate each algorithm for interpretability (i.e., does the algorithm lead to images with usable visual features?) and stability (i.e., does the algorithm consistently produce similar results?). We also provide a detailed discussion of the results for each algorithm across the different graph types and include a discussion of some strategies for using ordering algorithms for data analysis based on these results.","PeriodicalId":136557,"journal":{"name":"2007 6th International Asia-Pacific Symposium on Visualization","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"83","resultStr":"{\"title\":\"A comparison of vertex ordering algorithms for large graph visualization\",\"authors\":\"C. Mueller, Benjamin Martin, A. Lumsdaine\",\"doi\":\"10.1109/APVIS.2007.329289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we examine the use of graph ordering algorithms for visual analysis of data sets using visual similarity matrices. Visual similarity matrices display the relationships between data items in a dot-matrix plot format, with the axes labeled with the data items and points drawn if there is a relationship between two data items. The biggest challenge for displaying data using this representation is finding an ordering of the data items that reveals the internal structure of the data set. Poor orderings are indistinguishable from noise whereas a good ordering can reveal complex and subtle features of the data. We consider three general classes of algorithms for generating orderings: simple graph theoretic algorithms, symbolic sparse matrix reordering algorithms, and spectral decomposition algorithms. We apply each algorithm to synthetic and real world data sets and evaluate each algorithm for interpretability (i.e., does the algorithm lead to images with usable visual features?) and stability (i.e., does the algorithm consistently produce similar results?). We also provide a detailed discussion of the results for each algorithm across the different graph types and include a discussion of some strategies for using ordering algorithms for data analysis based on these results.\",\"PeriodicalId\":136557,\"journal\":{\"name\":\"2007 6th International Asia-Pacific Symposium on Visualization\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"83\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 6th International Asia-Pacific Symposium on Visualization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APVIS.2007.329289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 6th International Asia-Pacific Symposium on Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APVIS.2007.329289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 83

摘要

在本研究中,我们研究了使用图排序算法对使用视觉相似矩阵的数据集进行视觉分析。视觉相似性矩阵以点阵图格式显示数据项之间的关系,坐标轴标记数据项,如果两个数据项之间存在关系,则绘制点。使用这种表示方式显示数据的最大挑战是找到揭示数据集内部结构的数据项的顺序。较差的排序与噪声难以区分,而良好的排序可以揭示数据的复杂和微妙的特征。我们考虑了三种生成排序的一般算法:简单图论算法、符号稀疏矩阵重排序算法和谱分解算法。我们将每种算法应用于合成和真实世界的数据集,并评估每种算法的可解释性(即,算法是否导致具有可用视觉特征的图像?)和稳定性(即,算法是否始终产生相似的结果?)。我们还详细讨论了跨不同图类型的每种算法的结果,并讨论了基于这些结果使用排序算法进行数据分析的一些策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparison of vertex ordering algorithms for large graph visualization
In this study, we examine the use of graph ordering algorithms for visual analysis of data sets using visual similarity matrices. Visual similarity matrices display the relationships between data items in a dot-matrix plot format, with the axes labeled with the data items and points drawn if there is a relationship between two data items. The biggest challenge for displaying data using this representation is finding an ordering of the data items that reveals the internal structure of the data set. Poor orderings are indistinguishable from noise whereas a good ordering can reveal complex and subtle features of the data. We consider three general classes of algorithms for generating orderings: simple graph theoretic algorithms, symbolic sparse matrix reordering algorithms, and spectral decomposition algorithms. We apply each algorithm to synthetic and real world data sets and evaluate each algorithm for interpretability (i.e., does the algorithm lead to images with usable visual features?) and stability (i.e., does the algorithm consistently produce similar results?). We also provide a detailed discussion of the results for each algorithm across the different graph types and include a discussion of some strategies for using ordering algorithms for data analysis based on these results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信