{"title":"规则归纳的神经网络方法","authors":"R. Silva, Teresa B Ludermir","doi":"10.1109/IJCNN.1999.830845","DOIUrl":null,"url":null,"abstract":"Local basis function networks are a useful category of classifiers, with known variations developed in neural networks, machine learning and statistics communities. The localized range of activation of the hidden units have many similarities with rule-based representations. Neurofuzzy systems are a common example of a framework that explicitly integrates these approaches. Following this concept, we study alternatives for the development of hybrid rule-neural systems with the purpose of inducing robust and interpretable classifiers. Local fitting of parameters is done by a gradient descent optimization that modifies the covering produced by a rule induction algorithm. Two tasks are accomplished: how to select a small number of rules and how to improve precision. The use of this architecture is better suited when one wants to achieve a good compromise between classification performance and simplicity.","PeriodicalId":157719,"journal":{"name":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Neural network methods for rule induction\",\"authors\":\"R. Silva, Teresa B Ludermir\",\"doi\":\"10.1109/IJCNN.1999.830845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Local basis function networks are a useful category of classifiers, with known variations developed in neural networks, machine learning and statistics communities. The localized range of activation of the hidden units have many similarities with rule-based representations. Neurofuzzy systems are a common example of a framework that explicitly integrates these approaches. Following this concept, we study alternatives for the development of hybrid rule-neural systems with the purpose of inducing robust and interpretable classifiers. Local fitting of parameters is done by a gradient descent optimization that modifies the covering produced by a rule induction algorithm. Two tasks are accomplished: how to select a small number of rules and how to improve precision. The use of this architecture is better suited when one wants to achieve a good compromise between classification performance and simplicity.\",\"PeriodicalId\":157719,\"journal\":{\"name\":\"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.1999.830845\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1999.830845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Local basis function networks are a useful category of classifiers, with known variations developed in neural networks, machine learning and statistics communities. The localized range of activation of the hidden units have many similarities with rule-based representations. Neurofuzzy systems are a common example of a framework that explicitly integrates these approaches. Following this concept, we study alternatives for the development of hybrid rule-neural systems with the purpose of inducing robust and interpretable classifiers. Local fitting of parameters is done by a gradient descent optimization that modifies the covering produced by a rule induction algorithm. Two tasks are accomplished: how to select a small number of rules and how to improve precision. The use of this architecture is better suited when one wants to achieve a good compromise between classification performance and simplicity.