Oguzhan Kirtas, M. Mohammadi, B. Bentsen, P. Veltink, L. Struijk
{"title":"重度残障人士非侵入性舌-电脑介面设计与评估","authors":"Oguzhan Kirtas, M. Mohammadi, B. Bentsen, P. Veltink, L. Struijk","doi":"10.1109/BIBE52308.2021.9635238","DOIUrl":null,"url":null,"abstract":"Tongue-computer interfaces have shown the potential to control assistive devices developed for individuals with severe disabilities. However, current efficient tongue-computer interfaces require invasive methods for attaching the sensor activation units to the tongue, such as piercing. In this study, we propose a noninvasive tongue-computer interface to avoid the requirement of invasive activation unit attachment methods. We developed the noninvasive tongue-computer interface by integrating an activation unit on a frame, and mounting the frame on an inductive tongue-computer interface (ITCI). Thus, the users are able to activate the inductive sensors on the interface by positioning the activation unit with their tongue. They also do not need to remount the activation unit before each use. We performed pointing tests for controlling a computer cursor and number typing tests with two able-bodied participants, where one of them was experienced with using invasive tongue-computer interfaces and other one had no experience. We measured throughput and movement error for pointing tasks, and speed and accuracy for number typing tasks for the evaluation of the feasibility and performance of the developed noninvasive system. Results show that the inexperienced participant achieved similar results with the developed noninvasive tongue-computer interface compared to the current invasive version of the ITCI, while the experienced participant performed better with the invasive tongue-computer interface.","PeriodicalId":343724,"journal":{"name":"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Design and evaluation of a noninvasive tongue-computer interface for individuals with severe disabilities\",\"authors\":\"Oguzhan Kirtas, M. Mohammadi, B. Bentsen, P. Veltink, L. Struijk\",\"doi\":\"10.1109/BIBE52308.2021.9635238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tongue-computer interfaces have shown the potential to control assistive devices developed for individuals with severe disabilities. However, current efficient tongue-computer interfaces require invasive methods for attaching the sensor activation units to the tongue, such as piercing. In this study, we propose a noninvasive tongue-computer interface to avoid the requirement of invasive activation unit attachment methods. We developed the noninvasive tongue-computer interface by integrating an activation unit on a frame, and mounting the frame on an inductive tongue-computer interface (ITCI). Thus, the users are able to activate the inductive sensors on the interface by positioning the activation unit with their tongue. They also do not need to remount the activation unit before each use. We performed pointing tests for controlling a computer cursor and number typing tests with two able-bodied participants, where one of them was experienced with using invasive tongue-computer interfaces and other one had no experience. We measured throughput and movement error for pointing tasks, and speed and accuracy for number typing tasks for the evaluation of the feasibility and performance of the developed noninvasive system. Results show that the inexperienced participant achieved similar results with the developed noninvasive tongue-computer interface compared to the current invasive version of the ITCI, while the experienced participant performed better with the invasive tongue-computer interface.\",\"PeriodicalId\":343724,\"journal\":{\"name\":\"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE52308.2021.9635238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE52308.2021.9635238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and evaluation of a noninvasive tongue-computer interface for individuals with severe disabilities
Tongue-computer interfaces have shown the potential to control assistive devices developed for individuals with severe disabilities. However, current efficient tongue-computer interfaces require invasive methods for attaching the sensor activation units to the tongue, such as piercing. In this study, we propose a noninvasive tongue-computer interface to avoid the requirement of invasive activation unit attachment methods. We developed the noninvasive tongue-computer interface by integrating an activation unit on a frame, and mounting the frame on an inductive tongue-computer interface (ITCI). Thus, the users are able to activate the inductive sensors on the interface by positioning the activation unit with their tongue. They also do not need to remount the activation unit before each use. We performed pointing tests for controlling a computer cursor and number typing tests with two able-bodied participants, where one of them was experienced with using invasive tongue-computer interfaces and other one had no experience. We measured throughput and movement error for pointing tasks, and speed and accuracy for number typing tasks for the evaluation of the feasibility and performance of the developed noninvasive system. Results show that the inexperienced participant achieved similar results with the developed noninvasive tongue-computer interface compared to the current invasive version of the ITCI, while the experienced participant performed better with the invasive tongue-computer interface.