两次交叉过滤

Olivier Benoist, J. C. Ottem
{"title":"两次交叉过滤","authors":"Olivier Benoist, J. C. Ottem","doi":"10.1215/00127094-2021-0055","DOIUrl":null,"url":null,"abstract":"A cohomology class of a smooth complex variety of dimension $n$ has coniveau $\\geq c$ if it vanishes in the complement of a closed subvariety of codimension $\\geq c$, and has strong coniveau $\\geq c$ if it comes by proper pushforward from the cohomology of a smooth variety of dimension $\\leq n-c$. We show that these two notions differ in general, both for integral classes on smooth projective varieties and for rational classes on smooth open varieties.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Two coniveau filtrations\",\"authors\":\"Olivier Benoist, J. C. Ottem\",\"doi\":\"10.1215/00127094-2021-0055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A cohomology class of a smooth complex variety of dimension $n$ has coniveau $\\\\geq c$ if it vanishes in the complement of a closed subvariety of codimension $\\\\geq c$, and has strong coniveau $\\\\geq c$ if it comes by proper pushforward from the cohomology of a smooth variety of dimension $\\\\leq n-c$. We show that these two notions differ in general, both for integral classes on smooth projective varieties and for rational classes on smooth open varieties.\",\"PeriodicalId\":278201,\"journal\":{\"name\":\"arXiv: Algebraic Geometry\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1215/00127094-2021-0055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/00127094-2021-0055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

一个光滑复维变化$n$的上同调类,如果它在协维变化$\geq c$的闭子变化的补中消失,则具有隐性$\geq c$;如果它从光滑复维变化$\leq n-c$的上同调中适当推进,则具有强隐性$\geq c$。我们证明了这两个概念在一般情况下是不同的,无论是对于光滑投影变项上的积分类,还是对于光滑开变项上的有理类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two coniveau filtrations
A cohomology class of a smooth complex variety of dimension $n$ has coniveau $\geq c$ if it vanishes in the complement of a closed subvariety of codimension $\geq c$, and has strong coniveau $\geq c$ if it comes by proper pushforward from the cohomology of a smooth variety of dimension $\leq n-c$. We show that these two notions differ in general, both for integral classes on smooth projective varieties and for rational classes on smooth open varieties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信