{"title":"利用纳米科学的新概念开发新材料","authors":"Xiang Zhang","doi":"10.33552/MCMS.2020.02.000547","DOIUrl":null,"url":null,"abstract":"The foundation of material science has always been largely rooted in chemistry and the elements of periodic table, many of which have not yet been completely studied and whose full potential has still not been determined. In fact, it is possible to view material science not as “a” science in and of itself, but rather a combination of multiple scientific disciplines, including chemistry, physics and mechanics. The science of materials chemistry is closely associated with chemical structures which vary in scale, with small scale atomic, nanometer and micrometer structures typically having greater importance. When studying the characteristics of a new structure including its associated chemical, physical, mechanical properties etc. understanding these properties at multiple scales from atomic, up to micrometer is very important in determining the material’s range of functionalities. Completing this research and examining the outcomes greatly improves the ease and successfulness of new material applications and this remains true whether you are working with inorganic materials, organic materials or hybrids of the two. In my opinion, future developments in material science should aim to cross the border of inorganic and organic science, focusing instead on the study of the properties of atomic-micro scale material structures rather than following well established standards, such as ISOs for materials, all at macroscales.","PeriodicalId":297187,"journal":{"name":"Modern Concepts in Material Science","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using New Concepts in Nanoscience to Develop New Materials\",\"authors\":\"Xiang Zhang\",\"doi\":\"10.33552/MCMS.2020.02.000547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The foundation of material science has always been largely rooted in chemistry and the elements of periodic table, many of which have not yet been completely studied and whose full potential has still not been determined. In fact, it is possible to view material science not as “a” science in and of itself, but rather a combination of multiple scientific disciplines, including chemistry, physics and mechanics. The science of materials chemistry is closely associated with chemical structures which vary in scale, with small scale atomic, nanometer and micrometer structures typically having greater importance. When studying the characteristics of a new structure including its associated chemical, physical, mechanical properties etc. understanding these properties at multiple scales from atomic, up to micrometer is very important in determining the material’s range of functionalities. Completing this research and examining the outcomes greatly improves the ease and successfulness of new material applications and this remains true whether you are working with inorganic materials, organic materials or hybrids of the two. In my opinion, future developments in material science should aim to cross the border of inorganic and organic science, focusing instead on the study of the properties of atomic-micro scale material structures rather than following well established standards, such as ISOs for materials, all at macroscales.\",\"PeriodicalId\":297187,\"journal\":{\"name\":\"Modern Concepts in Material Science\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Concepts in Material Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33552/MCMS.2020.02.000547\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Concepts in Material Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33552/MCMS.2020.02.000547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using New Concepts in Nanoscience to Develop New Materials
The foundation of material science has always been largely rooted in chemistry and the elements of periodic table, many of which have not yet been completely studied and whose full potential has still not been determined. In fact, it is possible to view material science not as “a” science in and of itself, but rather a combination of multiple scientific disciplines, including chemistry, physics and mechanics. The science of materials chemistry is closely associated with chemical structures which vary in scale, with small scale atomic, nanometer and micrometer structures typically having greater importance. When studying the characteristics of a new structure including its associated chemical, physical, mechanical properties etc. understanding these properties at multiple scales from atomic, up to micrometer is very important in determining the material’s range of functionalities. Completing this research and examining the outcomes greatly improves the ease and successfulness of new material applications and this remains true whether you are working with inorganic materials, organic materials or hybrids of the two. In my opinion, future developments in material science should aim to cross the border of inorganic and organic science, focusing instead on the study of the properties of atomic-micro scale material structures rather than following well established standards, such as ISOs for materials, all at macroscales.