SDN——毫米波5G网络可靠通信的架构推动者

B. Sahoo, Chung-Wei Weng, Hung-Yu Wei
{"title":"SDN——毫米波5G网络可靠通信的架构推动者","authors":"B. Sahoo, Chung-Wei Weng, Hung-Yu Wei","doi":"10.1109/GLOCOMW.2018.8644374","DOIUrl":null,"url":null,"abstract":"Millimeter-wave (mmWave) frequency bands offer a new frontier for next-generation wireless networks, popularly known as 5G, to enable multi-gigabit communication; however, the availability and reliability of mmWave signals are significantly limited due to its unfavorable propagation characteristics. Thus, mmWave networks rely on directional narrow-beam transmissions to overcome severe path-loss. To mitigate the impact of transmission-reception directionality and provide uninterrupted network services, ensuring the availability of mmWave transmission links is important. In this paper, we proposed a new flexible network architecture to provide efficient resource coordination among serving basestations during user mobility. The key idea of this holistic architecture is to exploit the software-defined networking (SDN) technology with mmWave communication to provide a flexible and resilient network architecture. Besides, this paper presents an efficient and seamless uncoordinated network operation to support reliable communication in highly-dynamic environments characterized by high density and mobility of wireless devices. To warrant high-reliability and guard against the potential radio link failure, we introduce a new transmission framework to ensure that there is at least one basestation is connected to the UE at all times. We validate the proposed transmission scheme through simulations.","PeriodicalId":348924,"journal":{"name":"2018 IEEE Globecom Workshops (GC Wkshps)","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"SDN - Architectural Enabler for Reliable Communication Over Millimeter-Wave 5G Networks\",\"authors\":\"B. Sahoo, Chung-Wei Weng, Hung-Yu Wei\",\"doi\":\"10.1109/GLOCOMW.2018.8644374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Millimeter-wave (mmWave) frequency bands offer a new frontier for next-generation wireless networks, popularly known as 5G, to enable multi-gigabit communication; however, the availability and reliability of mmWave signals are significantly limited due to its unfavorable propagation characteristics. Thus, mmWave networks rely on directional narrow-beam transmissions to overcome severe path-loss. To mitigate the impact of transmission-reception directionality and provide uninterrupted network services, ensuring the availability of mmWave transmission links is important. In this paper, we proposed a new flexible network architecture to provide efficient resource coordination among serving basestations during user mobility. The key idea of this holistic architecture is to exploit the software-defined networking (SDN) technology with mmWave communication to provide a flexible and resilient network architecture. Besides, this paper presents an efficient and seamless uncoordinated network operation to support reliable communication in highly-dynamic environments characterized by high density and mobility of wireless devices. To warrant high-reliability and guard against the potential radio link failure, we introduce a new transmission framework to ensure that there is at least one basestation is connected to the UE at all times. We validate the proposed transmission scheme through simulations.\",\"PeriodicalId\":348924,\"journal\":{\"name\":\"2018 IEEE Globecom Workshops (GC Wkshps)\",\"volume\":\"146 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Globecom Workshops (GC Wkshps)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOCOMW.2018.8644374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Globecom Workshops (GC Wkshps)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOMW.2018.8644374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

毫米波(mmWave)频段为下一代无线网络(通常称为5G)提供了一个新的前沿,以实现多千兆通信;然而,由于其不利的传播特性,毫米波信号的可用性和可靠性受到极大限制。因此,毫米波网络依靠定向窄波束传输来克服严重的路径损耗。为了减轻传输-接收方向性的影响并提供不间断的网络服务,确保毫米波传输链路的可用性非常重要。本文提出了一种新的灵活的网络架构,以在用户移动过程中提供有效的服务基站之间的资源协调。这种整体架构的关键思想是利用软件定义网络(SDN)技术与毫米波通信,以提供灵活和弹性的网络架构。此外,本文还提出了一种高效、无缝的非协调网络运行方式,以支持无线设备高密度、移动性高动态环境下的可靠通信。为了保证高可靠性和防止潜在的无线电链路故障,我们引入了一个新的传输框架,以确保在任何时候都至少有一个基站连接到UE。我们通过仿真验证了所提出的传输方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SDN - Architectural Enabler for Reliable Communication Over Millimeter-Wave 5G Networks
Millimeter-wave (mmWave) frequency bands offer a new frontier for next-generation wireless networks, popularly known as 5G, to enable multi-gigabit communication; however, the availability and reliability of mmWave signals are significantly limited due to its unfavorable propagation characteristics. Thus, mmWave networks rely on directional narrow-beam transmissions to overcome severe path-loss. To mitigate the impact of transmission-reception directionality and provide uninterrupted network services, ensuring the availability of mmWave transmission links is important. In this paper, we proposed a new flexible network architecture to provide efficient resource coordination among serving basestations during user mobility. The key idea of this holistic architecture is to exploit the software-defined networking (SDN) technology with mmWave communication to provide a flexible and resilient network architecture. Besides, this paper presents an efficient and seamless uncoordinated network operation to support reliable communication in highly-dynamic environments characterized by high density and mobility of wireless devices. To warrant high-reliability and guard against the potential radio link failure, we introduce a new transmission framework to ensure that there is at least one basestation is connected to the UE at all times. We validate the proposed transmission scheme through simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信