Maksim Siniukov, Anastasia Antsiferova, D. Kulikov, D. Vatolin
{"title":"攻击VMAF和VMAF NEG:不同预处理方法的漏洞","authors":"Maksim Siniukov, Anastasia Antsiferova, D. Kulikov, D. Vatolin","doi":"10.1145/3508259.3508272","DOIUrl":null,"url":null,"abstract":"Video quality measurement plays a critical role in the development of video processing applications. In this paper, we show how popular quality metrics VMAF and its tuning-resistant version VMAF NEG can be artificially increased by video preprocessing. We propose a pipeline for tuning parameters of processing algorithms which allows to increase VMAF by up to 218.8%. A subjective comparison of preprocessed videos showed that with the majority of methods visual quality drops down or stays unchanged. We show that VMAF NEG scores can also be increased by some preprocessing methods by up to 21.9%.","PeriodicalId":259099,"journal":{"name":"Proceedings of the 2021 4th Artificial Intelligence and Cloud Computing Conference","volume":"154 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Hacking VMAF and VMAF NEG: Vulnerability to Different Preprocessing Methods\",\"authors\":\"Maksim Siniukov, Anastasia Antsiferova, D. Kulikov, D. Vatolin\",\"doi\":\"10.1145/3508259.3508272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Video quality measurement plays a critical role in the development of video processing applications. In this paper, we show how popular quality metrics VMAF and its tuning-resistant version VMAF NEG can be artificially increased by video preprocessing. We propose a pipeline for tuning parameters of processing algorithms which allows to increase VMAF by up to 218.8%. A subjective comparison of preprocessed videos showed that with the majority of methods visual quality drops down or stays unchanged. We show that VMAF NEG scores can also be increased by some preprocessing methods by up to 21.9%.\",\"PeriodicalId\":259099,\"journal\":{\"name\":\"Proceedings of the 2021 4th Artificial Intelligence and Cloud Computing Conference\",\"volume\":\"154 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 4th Artificial Intelligence and Cloud Computing Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3508259.3508272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 4th Artificial Intelligence and Cloud Computing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508259.3508272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hacking VMAF and VMAF NEG: Vulnerability to Different Preprocessing Methods
Video quality measurement plays a critical role in the development of video processing applications. In this paper, we show how popular quality metrics VMAF and its tuning-resistant version VMAF NEG can be artificially increased by video preprocessing. We propose a pipeline for tuning parameters of processing algorithms which allows to increase VMAF by up to 218.8%. A subjective comparison of preprocessed videos showed that with the majority of methods visual quality drops down or stays unchanged. We show that VMAF NEG scores can also be increased by some preprocessing methods by up to 21.9%.