椰子糖质量评估与预测的机器学习方法

Lea Monica B. Alonzo, Francheska B. Chioson, Homer S. Co, N. Bugtai, R. Baldovino
{"title":"椰子糖质量评估与预测的机器学习方法","authors":"Lea Monica B. Alonzo, Francheska B. Chioson, Homer S. Co, N. Bugtai, R. Baldovino","doi":"10.1109/HNICEM.2018.8666315","DOIUrl":null,"url":null,"abstract":"This study presents a machine learning approach to accurately assess the quality of coconut sugar using RGB values. Python and scikit-learn were used to run the following machine learning algorithms: artificial neural network (ANN), stochastic gradient descent (SGD), k-nearest neighbors (k-NN) algorithm, support vector machine (SVM), decision tree (DT) and random forest (RF). Comparisons were made between the aforementioned machine learning algorithms by evaluating the accuracy and the average running time of each training model. Results of the study show that the SGD is superior in terms of accuracy but falls short to k-NN and SVC in terms of running time. In this fashion, a plot between the accuracy and the running time was made and it was observed that algorithms with higher accuracies correspondingly have also higher running times. By this very nature, experimental results show that the SGD holds merit in accurately assessing the coconut sugar quality, despite its expense in running time.","PeriodicalId":426103,"journal":{"name":"2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology,Communication and Control, Environment and Management (HNICEM)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A Machine Learning Approach for Coconut Sugar Quality Assessment and Prediction\",\"authors\":\"Lea Monica B. Alonzo, Francheska B. Chioson, Homer S. Co, N. Bugtai, R. Baldovino\",\"doi\":\"10.1109/HNICEM.2018.8666315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a machine learning approach to accurately assess the quality of coconut sugar using RGB values. Python and scikit-learn were used to run the following machine learning algorithms: artificial neural network (ANN), stochastic gradient descent (SGD), k-nearest neighbors (k-NN) algorithm, support vector machine (SVM), decision tree (DT) and random forest (RF). Comparisons were made between the aforementioned machine learning algorithms by evaluating the accuracy and the average running time of each training model. Results of the study show that the SGD is superior in terms of accuracy but falls short to k-NN and SVC in terms of running time. In this fashion, a plot between the accuracy and the running time was made and it was observed that algorithms with higher accuracies correspondingly have also higher running times. By this very nature, experimental results show that the SGD holds merit in accurately assessing the coconut sugar quality, despite its expense in running time.\",\"PeriodicalId\":426103,\"journal\":{\"name\":\"2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology,Communication and Control, Environment and Management (HNICEM)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology,Communication and Control, Environment and Management (HNICEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HNICEM.2018.8666315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology,Communication and Control, Environment and Management (HNICEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HNICEM.2018.8666315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本研究提出了一种使用RGB值准确评估椰子糖质量的机器学习方法。使用Python和scikit-learn运行以下机器学习算法:人工神经网络(ANN)、随机梯度下降(SGD)、k-近邻(k-NN)算法、支持向量机(SVM)、决策树(DT)和随机森林(RF)。通过评估每种训练模型的准确率和平均运行时间,对上述机器学习算法进行比较。研究结果表明,SGD在准确率方面优于k-NN和SVC,但在运行时间方面低于k-NN和SVC。通过这种方式,绘制了准确率与运行时间之间的关系图,并观察到准确率越高的算法相应的运行时间也越长。基于这一特性,实验结果表明,SGD在准确评估椰子糖质量方面具有优点,尽管其运行时间较长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Machine Learning Approach for Coconut Sugar Quality Assessment and Prediction
This study presents a machine learning approach to accurately assess the quality of coconut sugar using RGB values. Python and scikit-learn were used to run the following machine learning algorithms: artificial neural network (ANN), stochastic gradient descent (SGD), k-nearest neighbors (k-NN) algorithm, support vector machine (SVM), decision tree (DT) and random forest (RF). Comparisons were made between the aforementioned machine learning algorithms by evaluating the accuracy and the average running time of each training model. Results of the study show that the SGD is superior in terms of accuracy but falls short to k-NN and SVC in terms of running time. In this fashion, a plot between the accuracy and the running time was made and it was observed that algorithms with higher accuracies correspondingly have also higher running times. By this very nature, experimental results show that the SGD holds merit in accurately assessing the coconut sugar quality, despite its expense in running time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信