基于混合原则规则的塞尔维亚语自动音节化方法

Aniko Kovač, M. Markovic
{"title":"基于混合原则规则的塞尔维亚语自动音节化方法","authors":"Aniko Kovač, M. Markovic","doi":"10.51663/pnz.59.1.06","DOIUrl":null,"url":null,"abstract":"In this paper, we present a mixed-principle rule-based approach to the automatic syllabification of Serbian, based on prescriptive rules from traditional grammar in combination with the Sonority Sequencing Principle. We explore the problems and limitations of the existing rule set and sonority-based approaches, introduce an algorithm that utilizes both means in an attempt to produce a more accurate segmentation of words into syllables that is better aligned with the intuition of the native speakers, and present the statistical data related to the distribution of syllables and their structure in Serbian.","PeriodicalId":315758,"journal":{"name":"Contributions to Contemporary History","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Mixed-principle Rule-based Approach to the Automatic Syllabification of Serbian\",\"authors\":\"Aniko Kovač, M. Markovic\",\"doi\":\"10.51663/pnz.59.1.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a mixed-principle rule-based approach to the automatic syllabification of Serbian, based on prescriptive rules from traditional grammar in combination with the Sonority Sequencing Principle. We explore the problems and limitations of the existing rule set and sonority-based approaches, introduce an algorithm that utilizes both means in an attempt to produce a more accurate segmentation of words into syllables that is better aligned with the intuition of the native speakers, and present the statistical data related to the distribution of syllables and their structure in Serbian.\",\"PeriodicalId\":315758,\"journal\":{\"name\":\"Contributions to Contemporary History\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contributions to Contemporary History\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51663/pnz.59.1.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to Contemporary History","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51663/pnz.59.1.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种基于混合原则的基于规则的方法来实现塞尔维亚语的自动音节化,该方法基于传统语法的规定性规则,并结合了声音排序原则。我们探讨了现有规则集和基于音调的方法的问题和局限性,引入了一种算法,该算法利用这两种方法,试图将单词更准确地分割成音节,从而更好地与母语人士的直觉相一致,并提供了与塞尔维亚语音节分布及其结构相关的统计数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Mixed-principle Rule-based Approach to the Automatic Syllabification of Serbian
In this paper, we present a mixed-principle rule-based approach to the automatic syllabification of Serbian, based on prescriptive rules from traditional grammar in combination with the Sonority Sequencing Principle. We explore the problems and limitations of the existing rule set and sonority-based approaches, introduce an algorithm that utilizes both means in an attempt to produce a more accurate segmentation of words into syllables that is better aligned with the intuition of the native speakers, and present the statistical data related to the distribution of syllables and their structure in Serbian.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信