基于标签的视频检索与社会标签相关学习

Hiroshi Takeda, Soh Yoshida, M. Muneyasu
{"title":"基于标签的视频检索与社会标签相关学习","authors":"Hiroshi Takeda, Soh Yoshida, M. Muneyasu","doi":"10.1109/GCCE46687.2019.9015338","DOIUrl":null,"url":null,"abstract":"High-quality tags play an important role in many applications such as multimedia information retrieval. This paper proposes a social tag relevance learning method using a data-driven approach to improving tag-based video retrieval performance. The tag relevance means how a tag is relevant to multimedia content. To learn the tag relevance, we apply a well-known tag neighbor voting algorithm, which accumulates votes from visual neighbors. However, an imbalance in the number of tags among the datasets causes a loss in the accuracy of tag voting. Therefore, in the proposed method, we examine a formula for calculating the tag relevance score considering the tag occurrence frequency imbalance. We conduct experiments on the YouTube-8M dataset, and the results show that our approach is effective and efficient.","PeriodicalId":303502,"journal":{"name":"2019 IEEE 8th Global Conference on Consumer Electronics (GCCE)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Tag-based Video Retrieval with Social Tag Relevance Learning\",\"authors\":\"Hiroshi Takeda, Soh Yoshida, M. Muneyasu\",\"doi\":\"10.1109/GCCE46687.2019.9015338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-quality tags play an important role in many applications such as multimedia information retrieval. This paper proposes a social tag relevance learning method using a data-driven approach to improving tag-based video retrieval performance. The tag relevance means how a tag is relevant to multimedia content. To learn the tag relevance, we apply a well-known tag neighbor voting algorithm, which accumulates votes from visual neighbors. However, an imbalance in the number of tags among the datasets causes a loss in the accuracy of tag voting. Therefore, in the proposed method, we examine a formula for calculating the tag relevance score considering the tag occurrence frequency imbalance. We conduct experiments on the YouTube-8M dataset, and the results show that our approach is effective and efficient.\",\"PeriodicalId\":303502,\"journal\":{\"name\":\"2019 IEEE 8th Global Conference on Consumer Electronics (GCCE)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 8th Global Conference on Consumer Electronics (GCCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GCCE46687.2019.9015338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 8th Global Conference on Consumer Electronics (GCCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCCE46687.2019.9015338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

高质量的标签在多媒体信息检索等应用中发挥着重要作用。本文提出了一种基于数据驱动的社会标签相关性学习方法,以提高基于标签的视频检索性能。标签相关性是指标签与多媒体内容的相关性。为了学习标签相关性,我们采用了一种众所周知的标签邻居投票算法,该算法从视觉邻居中累积投票。然而,数据集之间标签数量的不平衡导致标签投票的准确性下降。因此,在本文提出的方法中,我们研究了一个考虑标签出现频率不平衡的标签相关性评分计算公式。我们在YouTube-8M数据集上进行了实验,结果表明我们的方法是有效和高效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tag-based Video Retrieval with Social Tag Relevance Learning
High-quality tags play an important role in many applications such as multimedia information retrieval. This paper proposes a social tag relevance learning method using a data-driven approach to improving tag-based video retrieval performance. The tag relevance means how a tag is relevant to multimedia content. To learn the tag relevance, we apply a well-known tag neighbor voting algorithm, which accumulates votes from visual neighbors. However, an imbalance in the number of tags among the datasets causes a loss in the accuracy of tag voting. Therefore, in the proposed method, we examine a formula for calculating the tag relevance score considering the tag occurrence frequency imbalance. We conduct experiments on the YouTube-8M dataset, and the results show that our approach is effective and efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信