基于改进FAST和RANSAC的图像匹配算法

Qiongnan Yang, Chenguang Qiu, L. Wu, Jianjun Chen
{"title":"基于改进FAST和RANSAC的图像匹配算法","authors":"Qiongnan Yang, Chenguang Qiu, L. Wu, Jianjun Chen","doi":"10.1109/ICMA52036.2021.9512798","DOIUrl":null,"url":null,"abstract":"Aiming at the problems of large amount of calculation, low matching accuracy and long matching time in image matching in visual positioning system, this paper proposes an image matching algorithm based on improved FAST (MFAST) and RANSAC (P-RANSAC). First, the multi-level FAST algorithm is used to extract the corner points, and the SURF algorithm is used to determine the main direction to generate the feature descriptor; then the fast approximate nearest neighbor algorithm is used to complete the rough matching of the feature points. Use the pre-sampling algorithm to select a new sample set for sampling and test the calculated model and discard the incorrect model parameters. Experimental results show that the proposed algorithm can effectively improve the accuracy and real-time performance of image matching compared with traditional algorithms.","PeriodicalId":339025,"journal":{"name":"2021 IEEE International Conference on Mechatronics and Automation (ICMA)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Image Matching Algorithm Based on Improved FAST and RANSAC\",\"authors\":\"Qiongnan Yang, Chenguang Qiu, L. Wu, Jianjun Chen\",\"doi\":\"10.1109/ICMA52036.2021.9512798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the problems of large amount of calculation, low matching accuracy and long matching time in image matching in visual positioning system, this paper proposes an image matching algorithm based on improved FAST (MFAST) and RANSAC (P-RANSAC). First, the multi-level FAST algorithm is used to extract the corner points, and the SURF algorithm is used to determine the main direction to generate the feature descriptor; then the fast approximate nearest neighbor algorithm is used to complete the rough matching of the feature points. Use the pre-sampling algorithm to select a new sample set for sampling and test the calculated model and discard the incorrect model parameters. Experimental results show that the proposed algorithm can effectively improve the accuracy and real-time performance of image matching compared with traditional algorithms.\",\"PeriodicalId\":339025,\"journal\":{\"name\":\"2021 IEEE International Conference on Mechatronics and Automation (ICMA)\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Mechatronics and Automation (ICMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMA52036.2021.9512798\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Mechatronics and Automation (ICMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA52036.2021.9512798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

针对视觉定位系统中图像匹配存在的计算量大、匹配精度低、匹配时间长等问题,提出了一种基于改进FAST (MFAST)和RANSAC (P-RANSAC)的图像匹配算法。首先,利用多级FAST算法提取角点,利用SURF算法确定主方向生成特征描述子;然后采用快速近似最近邻算法完成特征点的粗匹配。使用预采样算法选择一个新的样本集进行采样,对计算出的模型进行检验,丢弃不正确的模型参数。实验结果表明,与传统算法相比,该算法能有效提高图像匹配的精度和实时性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image Matching Algorithm Based on Improved FAST and RANSAC
Aiming at the problems of large amount of calculation, low matching accuracy and long matching time in image matching in visual positioning system, this paper proposes an image matching algorithm based on improved FAST (MFAST) and RANSAC (P-RANSAC). First, the multi-level FAST algorithm is used to extract the corner points, and the SURF algorithm is used to determine the main direction to generate the feature descriptor; then the fast approximate nearest neighbor algorithm is used to complete the rough matching of the feature points. Use the pre-sampling algorithm to select a new sample set for sampling and test the calculated model and discard the incorrect model parameters. Experimental results show that the proposed algorithm can effectively improve the accuracy and real-time performance of image matching compared with traditional algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信