无次元图有轻扳手

G. Borradaile, Hung Le, Christian Wulff-Nilsen
{"title":"无次元图有轻扳手","authors":"G. Borradaile, Hung Le, Christian Wulff-Nilsen","doi":"10.1109/FOCS.2017.76","DOIUrl":null,"url":null,"abstract":"We show that every H-minor-free graph has a light (1+≥ilon)-spanner, resolving an open problem of Grigni and Sissokho and proving a conjecture of Grigni and Hung \\cite{GH12}. Our lightness bound is \\[O\\left(\\frac{\\sigma_H}{≥ilon^3}\\log \\frac{1}{≥ilon}\\right)\\] where \\sigma_H = |V(H)|√{\\log |V(H)|} is the sparsity coefficient of H-minor-free graphs. That is, it has a practical dependency on the size of the minor H. Our result also implies that the polynomial time approximation scheme (PTAS) for the Travelling Salesperson Problem (TSP) in H-minor-free graphs by Demaine, Hajiaghayi and Kawarabayashi is an efficient PTAS whose running time is 2^{O_H\\left(\\frac{1}{≥ilon^4}\\log \\frac{1}{≥ilon}\\right)}n^{O(1)} where O_H ignores dependencies on the size of H. Our techniques significantly deviate from existing lines of research on spanners for H-minor-free graphs, but build upon the work of Chechik and Wulff-Nilsen for spanners of general graphs[6].","PeriodicalId":311592,"journal":{"name":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Minor-Free Graphs Have Light Spanners\",\"authors\":\"G. Borradaile, Hung Le, Christian Wulff-Nilsen\",\"doi\":\"10.1109/FOCS.2017.76\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that every H-minor-free graph has a light (1+≥ilon)-spanner, resolving an open problem of Grigni and Sissokho and proving a conjecture of Grigni and Hung \\\\cite{GH12}. Our lightness bound is \\\\[O\\\\left(\\\\frac{\\\\sigma_H}{≥ilon^3}\\\\log \\\\frac{1}{≥ilon}\\\\right)\\\\] where \\\\sigma_H = |V(H)|√{\\\\log |V(H)|} is the sparsity coefficient of H-minor-free graphs. That is, it has a practical dependency on the size of the minor H. Our result also implies that the polynomial time approximation scheme (PTAS) for the Travelling Salesperson Problem (TSP) in H-minor-free graphs by Demaine, Hajiaghayi and Kawarabayashi is an efficient PTAS whose running time is 2^{O_H\\\\left(\\\\frac{1}{≥ilon^4}\\\\log \\\\frac{1}{≥ilon}\\\\right)}n^{O(1)} where O_H ignores dependencies on the size of H. Our techniques significantly deviate from existing lines of research on spanners for H-minor-free graphs, but build upon the work of Chechik and Wulff-Nilsen for spanners of general graphs[6].\",\"PeriodicalId\":311592,\"journal\":{\"name\":\"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCS.2017.76\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2017.76","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

我们证明了每个无h次元图都有一个轻(1+≥ilon)-扳手,解决了Grigni和Sissokho的一个开放问题,并证明了Grigni和Hung的一个猜想\cite{GH12}。我们的亮度界是\[O\left(\frac{\sigma_H}{≥ilon^3}\log \frac{1}{≥ilon}\right)\],其中\sigma _H = |V(H)|√{\log |V(H)|}为无H次元图的稀疏系数。也就是说,它与小h的大小有实际的依赖关系。我们的结果还表明,对于Demaine (h -free - graph)中旅行销售人员问题(TSP)的多项式时间逼近方案(PTAS),Hajiaghayi和Kawarabayashi是一个高效的PTAS,其运行时间为2^{O_H \left (\frac{1}{≥ilon^4}\log\frac{1}{≥ilon}\right)}n^{O(1),}其中O_H忽略了对h大小的依赖关系。我们的技术明显偏离了现有的关于无h次图扳手的研究路线,但建立在Chechik和Wulff-Nilsen对一般图扳手[6]的研究基础上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minor-Free Graphs Have Light Spanners
We show that every H-minor-free graph has a light (1+≥ilon)-spanner, resolving an open problem of Grigni and Sissokho and proving a conjecture of Grigni and Hung \cite{GH12}. Our lightness bound is \[O\left(\frac{\sigma_H}{≥ilon^3}\log \frac{1}{≥ilon}\right)\] where \sigma_H = |V(H)|√{\log |V(H)|} is the sparsity coefficient of H-minor-free graphs. That is, it has a practical dependency on the size of the minor H. Our result also implies that the polynomial time approximation scheme (PTAS) for the Travelling Salesperson Problem (TSP) in H-minor-free graphs by Demaine, Hajiaghayi and Kawarabayashi is an efficient PTAS whose running time is 2^{O_H\left(\frac{1}{≥ilon^4}\log \frac{1}{≥ilon}\right)}n^{O(1)} where O_H ignores dependencies on the size of H. Our techniques significantly deviate from existing lines of research on spanners for H-minor-free graphs, but build upon the work of Chechik and Wulff-Nilsen for spanners of general graphs[6].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信