Petri网的停止转换1

J. Desel, Marc Finthammer
{"title":"Petri网的停止转换1","authors":"J. Desel, Marc Finthammer","doi":"10.3233/stal200009","DOIUrl":null,"url":null,"abstract":"A transition t stops a place/transition Petri net if each reachable marking of the net enables only finite occurrence sequences without occurrences of t (i.e., every infinite occurrence sequence enabled at this marking contains occurrences of t). Roughly speaking, when t is stopped then all transitions of the net stop eventually. This contribution shows how to identify stop-transitions of unbounded nets using the coverability graph. Furthermore, the developed technique is adapted to a more general question considering a set of stop-transitions and focussing on a certain part of the net to be stopped. Finally, an implementation of the developed algorithm is presented.","PeriodicalId":213829,"journal":{"name":"A Mosaic of Computational Topics: from Classical to Novel","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stop-transitions of Petri Nets1\",\"authors\":\"J. Desel, Marc Finthammer\",\"doi\":\"10.3233/stal200009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A transition t stops a place/transition Petri net if each reachable marking of the net enables only finite occurrence sequences without occurrences of t (i.e., every infinite occurrence sequence enabled at this marking contains occurrences of t). Roughly speaking, when t is stopped then all transitions of the net stop eventually. This contribution shows how to identify stop-transitions of unbounded nets using the coverability graph. Furthermore, the developed technique is adapted to a more general question considering a set of stop-transitions and focussing on a certain part of the net to be stopped. Finally, an implementation of the developed algorithm is presented.\",\"PeriodicalId\":213829,\"journal\":{\"name\":\"A Mosaic of Computational Topics: from Classical to Novel\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"A Mosaic of Computational Topics: from Classical to Novel\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/stal200009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"A Mosaic of Computational Topics: from Classical to Novel","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/stal200009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果网的每个可达标记只允许有限的发生序列而不允许t的出现(即在该标记处启用的每个无限的发生序列都包含t的出现),则过渡t停止了位置/过渡Petri网。粗略地说,当t停止时,网的所有过渡最终停止。这个贡献展示了如何使用可覆盖性图来识别无界网络的停止转换。此外,所开发的技术适用于考虑一组停止转换并聚焦于要停止的网络的某个部分的更一般的问题。最后,给出了该算法的具体实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stop-transitions of Petri Nets1
A transition t stops a place/transition Petri net if each reachable marking of the net enables only finite occurrence sequences without occurrences of t (i.e., every infinite occurrence sequence enabled at this marking contains occurrences of t). Roughly speaking, when t is stopped then all transitions of the net stop eventually. This contribution shows how to identify stop-transitions of unbounded nets using the coverability graph. Furthermore, the developed technique is adapted to a more general question considering a set of stop-transitions and focussing on a certain part of the net to be stopped. Finally, an implementation of the developed algorithm is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信