基于QoS特性的互联网视频流分类

Zaijian Wang, Yu-ning Dong, Hai-xian Shi, Lingyun Yang, Pingping Tang
{"title":"基于QoS特性的互联网视频流分类","authors":"Zaijian Wang, Yu-ning Dong, Hai-xian Shi, Lingyun Yang, Pingping Tang","doi":"10.1109/ICCNC.2016.7440599","DOIUrl":null,"url":null,"abstract":"This paper addresses the issue of effective classification of video traffic with the view of QoS guarantee, and presents a modified K-Singular Value Decomposition (K-SVD) classification framework based on the concept of QFAg (QoS based Flow Aggregation). By statistical analysis of video flows on large-scale real networks, we define 5 Quality of Service (QoS) categories with the features of downstream/upstream rates. To investigate the sparsity property of multimedia QoS feature, this paper utilizes modified K-SVD to train dictionary extracted from training samples. By learning feature-set to obtain sparse representation for video traffic, we propose a feature-based method to classify video traffic. Experimental results reveal that the proposed method can improve the classification performance significantly compared to previous methods.","PeriodicalId":308458,"journal":{"name":"2016 International Conference on Computing, Networking and Communications (ICNC)","volume":"2013 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Internet video traffic classification using QoS features\",\"authors\":\"Zaijian Wang, Yu-ning Dong, Hai-xian Shi, Lingyun Yang, Pingping Tang\",\"doi\":\"10.1109/ICCNC.2016.7440599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the issue of effective classification of video traffic with the view of QoS guarantee, and presents a modified K-Singular Value Decomposition (K-SVD) classification framework based on the concept of QFAg (QoS based Flow Aggregation). By statistical analysis of video flows on large-scale real networks, we define 5 Quality of Service (QoS) categories with the features of downstream/upstream rates. To investigate the sparsity property of multimedia QoS feature, this paper utilizes modified K-SVD to train dictionary extracted from training samples. By learning feature-set to obtain sparse representation for video traffic, we propose a feature-based method to classify video traffic. Experimental results reveal that the proposed method can improve the classification performance significantly compared to previous methods.\",\"PeriodicalId\":308458,\"journal\":{\"name\":\"2016 International Conference on Computing, Networking and Communications (ICNC)\",\"volume\":\"2013 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Computing, Networking and Communications (ICNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCNC.2016.7440599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Computing, Networking and Communications (ICNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCNC.2016.7440599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

从QoS保证的角度研究视频流量的有效分类问题,提出了一种基于QoS的流量聚合(QFAg)概念的改进k -奇异值分解(K-SVD)分类框架。通过对大规模真实网络视频流的统计分析,我们定义了5种具有下游/上游速率特征的服务质量(QoS)类别。为了研究多媒体QoS特征的稀疏性,本文利用改进的K-SVD对训练样本提取的字典进行训练。通过学习特征集获得视频流量的稀疏表示,提出了一种基于特征的视频流量分类方法。实验结果表明,与已有的分类方法相比,该方法能显著提高分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Internet video traffic classification using QoS features
This paper addresses the issue of effective classification of video traffic with the view of QoS guarantee, and presents a modified K-Singular Value Decomposition (K-SVD) classification framework based on the concept of QFAg (QoS based Flow Aggregation). By statistical analysis of video flows on large-scale real networks, we define 5 Quality of Service (QoS) categories with the features of downstream/upstream rates. To investigate the sparsity property of multimedia QoS feature, this paper utilizes modified K-SVD to train dictionary extracted from training samples. By learning feature-set to obtain sparse representation for video traffic, we propose a feature-based method to classify video traffic. Experimental results reveal that the proposed method can improve the classification performance significantly compared to previous methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信