三维立体视觉计数相机的实时占用校正方法

Fisayo Caleb Sangogboye, M. Kjærgaard
{"title":"三维立体视觉计数相机的实时占用校正方法","authors":"Fisayo Caleb Sangogboye, M. Kjærgaard","doi":"10.1145/3274783.3275204","DOIUrl":null,"url":null,"abstract":"In this poster, we present an occupancy count correction method - PreCount that corrects the count errors of camera sensing technologies in real-time. PreCount utilizes supervised machine learning approach to learn error patterns from previous corrections alongside some contextual factors that are responsible for the propagation of these errors. In our evaluation, we compare PreCount with state-of-art methods using the normalized root mean squared error metric (NRMSE) with datasets from four building cases. The obtained evaluation results using ground truth data indicates that PreCount can achieve an error reduction of 68% when compared to raw counts and state-of-art methods.","PeriodicalId":156307,"journal":{"name":"Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems","volume":"2012 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Real-time Occupancy Correction Method for 3D Stereovision Counting Cameras\",\"authors\":\"Fisayo Caleb Sangogboye, M. Kjærgaard\",\"doi\":\"10.1145/3274783.3275204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this poster, we present an occupancy count correction method - PreCount that corrects the count errors of camera sensing technologies in real-time. PreCount utilizes supervised machine learning approach to learn error patterns from previous corrections alongside some contextual factors that are responsible for the propagation of these errors. In our evaluation, we compare PreCount with state-of-art methods using the normalized root mean squared error metric (NRMSE) with datasets from four building cases. The obtained evaluation results using ground truth data indicates that PreCount can achieve an error reduction of 68% when compared to raw counts and state-of-art methods.\",\"PeriodicalId\":156307,\"journal\":{\"name\":\"Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems\",\"volume\":\"2012 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3274783.3275204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3274783.3275204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这张海报中,我们提出了一种占用计数校正方法- PreCount,它可以实时校正相机传感技术的计数误差。PreCount利用有监督的机器学习方法从之前的更正中学习错误模式,以及负责这些错误传播的一些上下文因素。在我们的评估中,我们将PreCount与使用归一化均方根误差度量(NRMSE)的最先进方法与来自四个建筑案例的数据集进行比较。使用地面真实数据获得的评估结果表明,与原始计数和最先进的方法相比,PreCount可以将误差减少68%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time Occupancy Correction Method for 3D Stereovision Counting Cameras
In this poster, we present an occupancy count correction method - PreCount that corrects the count errors of camera sensing technologies in real-time. PreCount utilizes supervised machine learning approach to learn error patterns from previous corrections alongside some contextual factors that are responsible for the propagation of these errors. In our evaluation, we compare PreCount with state-of-art methods using the normalized root mean squared error metric (NRMSE) with datasets from four building cases. The obtained evaluation results using ground truth data indicates that PreCount can achieve an error reduction of 68% when compared to raw counts and state-of-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信