体积拼图:具有多变量属性的分割体积数据的可视化分析

Marco Agus, A. Aboulhassan, K. Al Thelaya, G. Pintore, E. Gobbetti, C. Calì, J. Schneider
{"title":"体积拼图:具有多变量属性的分割体积数据的可视化分析","authors":"Marco Agus, A. Aboulhassan, K. Al Thelaya, G. Pintore, E. Gobbetti, C. Calì, J. Schneider","doi":"10.1109/VIS54862.2022.00035","DOIUrl":null,"url":null,"abstract":"A variety of application domains, including material science, neuroscience, and connectomics, commonly use segmented volume data for exploratory visual analysis. In many cases, segmented objects are characterized by multivariate attributes expressing specific geometric or physical features. Objects with similar characteristics, determined by selected attribute configurations, can create peculiar spatial patterns, whose detection and study is of fundamental importance. This task is notoriously difficult, especially when the number of attributes per segment is large. In this work, we propose an interactive framework that combines a state-of-the-art direct volume renderer for categorical volumes with techniques for the analysis of the attribute space and for the automatic creation of 2D transfer function. We show, in particular, how dimensionality reduction, kernel-density estimation, and topological techniques such as Morse analysis combined with scatter and density plots allow the efficient design of two-dimensional color maps that highlight spatial patterns. The capabilities of our framework are demonstrated on synthetic and real-world data from several domains.","PeriodicalId":190244,"journal":{"name":"2022 IEEE Visualization and Visual Analytics (VIS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Volume Puzzle: visual analysis of segmented volume data with multivariate attributes\",\"authors\":\"Marco Agus, A. Aboulhassan, K. Al Thelaya, G. Pintore, E. Gobbetti, C. Calì, J. Schneider\",\"doi\":\"10.1109/VIS54862.2022.00035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A variety of application domains, including material science, neuroscience, and connectomics, commonly use segmented volume data for exploratory visual analysis. In many cases, segmented objects are characterized by multivariate attributes expressing specific geometric or physical features. Objects with similar characteristics, determined by selected attribute configurations, can create peculiar spatial patterns, whose detection and study is of fundamental importance. This task is notoriously difficult, especially when the number of attributes per segment is large. In this work, we propose an interactive framework that combines a state-of-the-art direct volume renderer for categorical volumes with techniques for the analysis of the attribute space and for the automatic creation of 2D transfer function. We show, in particular, how dimensionality reduction, kernel-density estimation, and topological techniques such as Morse analysis combined with scatter and density plots allow the efficient design of two-dimensional color maps that highlight spatial patterns. The capabilities of our framework are demonstrated on synthetic and real-world data from several domains.\",\"PeriodicalId\":190244,\"journal\":{\"name\":\"2022 IEEE Visualization and Visual Analytics (VIS)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Visualization and Visual Analytics (VIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VIS54862.2022.00035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Visualization and Visual Analytics (VIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VIS54862.2022.00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

各种应用领域,包括材料科学、神经科学和连接组学,通常使用分段体数据进行探索性视觉分析。在许多情况下,被分割的对象具有表示特定几何或物理特征的多元属性。具有相似特征的物体,通过选定的属性配置,可以形成独特的空间格局,对其进行检测和研究是至关重要的。这项任务非常困难,特别是当每个段的属性数量很大时。在这项工作中,我们提出了一个交互式框架,该框架结合了用于分类体积的最先进的直接体积渲染器,以及用于分析属性空间和自动创建2D传递函数的技术。我们特别展示了降维、核密度估计和拓扑技术,如莫尔斯分析与散点和密度图相结合,如何有效地设计出突出空间模式的二维彩色地图。我们的框架的功能在来自多个领域的合成数据和实际数据上进行了演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Volume Puzzle: visual analysis of segmented volume data with multivariate attributes
A variety of application domains, including material science, neuroscience, and connectomics, commonly use segmented volume data for exploratory visual analysis. In many cases, segmented objects are characterized by multivariate attributes expressing specific geometric or physical features. Objects with similar characteristics, determined by selected attribute configurations, can create peculiar spatial patterns, whose detection and study is of fundamental importance. This task is notoriously difficult, especially when the number of attributes per segment is large. In this work, we propose an interactive framework that combines a state-of-the-art direct volume renderer for categorical volumes with techniques for the analysis of the attribute space and for the automatic creation of 2D transfer function. We show, in particular, how dimensionality reduction, kernel-density estimation, and topological techniques such as Morse analysis combined with scatter and density plots allow the efficient design of two-dimensional color maps that highlight spatial patterns. The capabilities of our framework are demonstrated on synthetic and real-world data from several domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信