回流过程中焊点形成模拟及元器件墓碑预测

X. Wu, X. Dou, C. Yeh, K. Waytt
{"title":"回流过程中焊点形成模拟及元器件墓碑预测","authors":"X. Wu, X. Dou, C. Yeh, K. Waytt","doi":"10.1115/1.2792601","DOIUrl":null,"url":null,"abstract":"The failure of electrical devices associated with solder joints has become one of the most critical reliability issues for surface-mounted devices. Solder joint reliability performance has been found to be highly dependent on the solder joint configuration, which, in turn, is governed by bond pad size, alloy material, and leadframe structure, as well as solder reflow characteristics. To investigate Tombstone effect causing solder joint failure during leadless component reflow process, this work has focused on 1) developing numerical model for the simulations of the solder joint formation during the reflow process; 2) determining possibility that a tombstone effect for the leadless component may occur by analyzing the force and torque in the problem. Using this methodology, the Tombstone effect associated with different pad geometry configurations has been analyzed though the application of the software tool Surface Evolver. Simulations show that the tombstoning is very sensitive to pad / component geometry design, solder surface tension, paste volume, wetting area and wetting angle. This model simulation can be used to determine optimal solder paste volume, pad geometry configurations and solder material for avoiding Tombstone effect.","PeriodicalId":432053,"journal":{"name":"Manufacturing Science and Engineering: Volume 1","volume":"186 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Solder Joint Formation Simulation and Component Tombstoning Prediction During Reflow\",\"authors\":\"X. Wu, X. Dou, C. Yeh, K. Waytt\",\"doi\":\"10.1115/1.2792601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The failure of electrical devices associated with solder joints has become one of the most critical reliability issues for surface-mounted devices. Solder joint reliability performance has been found to be highly dependent on the solder joint configuration, which, in turn, is governed by bond pad size, alloy material, and leadframe structure, as well as solder reflow characteristics. To investigate Tombstone effect causing solder joint failure during leadless component reflow process, this work has focused on 1) developing numerical model for the simulations of the solder joint formation during the reflow process; 2) determining possibility that a tombstone effect for the leadless component may occur by analyzing the force and torque in the problem. Using this methodology, the Tombstone effect associated with different pad geometry configurations has been analyzed though the application of the software tool Surface Evolver. Simulations show that the tombstoning is very sensitive to pad / component geometry design, solder surface tension, paste volume, wetting area and wetting angle. This model simulation can be used to determine optimal solder paste volume, pad geometry configurations and solder material for avoiding Tombstone effect.\",\"PeriodicalId\":432053,\"journal\":{\"name\":\"Manufacturing Science and Engineering: Volume 1\",\"volume\":\"186 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manufacturing Science and Engineering: Volume 1\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.2792601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Science and Engineering: Volume 1","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.2792601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

与焊点相关的电气设备故障已成为表面安装设备最关键的可靠性问题之一。人们发现,焊点的可靠性性能高度依赖于焊点的结构,而这种结构又受焊盘尺寸、合金材料、引线框架结构以及焊料回流特性的影响。为了研究无铅元件回流过程中导致焊点失效的墓碑效应,本文主要研究了1)建立了模拟回流过程中焊点形成的数值模型;2)通过分析问题中的力和扭矩,确定无引线元件出现墓碑效应的可能性。利用该方法,通过应用Surface Evolver软件工具,分析了不同垫块几何构型下的墓碑效应。仿真结果表明,焊盘/元件几何设计、焊料表面张力、膏体体积、润湿面积和润湿角度对墓碑效应非常敏感。该模型可用于确定避免墓碑效应的最佳锡膏体积、焊盘几何结构和焊料材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solder Joint Formation Simulation and Component Tombstoning Prediction During Reflow
The failure of electrical devices associated with solder joints has become one of the most critical reliability issues for surface-mounted devices. Solder joint reliability performance has been found to be highly dependent on the solder joint configuration, which, in turn, is governed by bond pad size, alloy material, and leadframe structure, as well as solder reflow characteristics. To investigate Tombstone effect causing solder joint failure during leadless component reflow process, this work has focused on 1) developing numerical model for the simulations of the solder joint formation during the reflow process; 2) determining possibility that a tombstone effect for the leadless component may occur by analyzing the force and torque in the problem. Using this methodology, the Tombstone effect associated with different pad geometry configurations has been analyzed though the application of the software tool Surface Evolver. Simulations show that the tombstoning is very sensitive to pad / component geometry design, solder surface tension, paste volume, wetting area and wetting angle. This model simulation can be used to determine optimal solder paste volume, pad geometry configurations and solder material for avoiding Tombstone effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信