广义双调和Wang-Ball曲面

A. Kherd, A. Saaban, Ibrahim Iskander
{"title":"广义双调和Wang-Ball曲面","authors":"A. Kherd, A. Saaban, Ibrahim Iskander","doi":"10.1109/ICOICE48418.2019.9035155","DOIUrl":null,"url":null,"abstract":"A prescribed boundary base on elliptic partial differential operators of method is presented in this study to generate Wang-Ball surfaces. Particularly, the study is heavily concerned with the biharmonic Wang-Ball surfaces, which enables the overall surface to be controlled and generated on boundary curves instead of utilizing set of control points. To show the proposed study method, Biharmonic Wang-Ball patches of degree 3 was chosen for the study. Keywords: Wang-Ball plynomial, biharmonic, differential equa-tinn.","PeriodicalId":109414,"journal":{"name":"2019 First International Conference of Intelligent Computing and Engineering (ICOICE)","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Generalized Biharmonic Wang-Ball Surface\",\"authors\":\"A. Kherd, A. Saaban, Ibrahim Iskander\",\"doi\":\"10.1109/ICOICE48418.2019.9035155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A prescribed boundary base on elliptic partial differential operators of method is presented in this study to generate Wang-Ball surfaces. Particularly, the study is heavily concerned with the biharmonic Wang-Ball surfaces, which enables the overall surface to be controlled and generated on boundary curves instead of utilizing set of control points. To show the proposed study method, Biharmonic Wang-Ball patches of degree 3 was chosen for the study. Keywords: Wang-Ball plynomial, biharmonic, differential equa-tinn.\",\"PeriodicalId\":109414,\"journal\":{\"name\":\"2019 First International Conference of Intelligent Computing and Engineering (ICOICE)\",\"volume\":\"126 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 First International Conference of Intelligent Computing and Engineering (ICOICE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOICE48418.2019.9035155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 First International Conference of Intelligent Computing and Engineering (ICOICE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOICE48418.2019.9035155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于椭圆偏微分算子的规定边界法来生成王球曲面。特别是,该研究重点关注双调和Wang-Ball曲面,它使整个曲面能够在边界曲线上控制和生成,而不是利用一组控制点。为了验证所提出的研究方法,我们选择了3度的双谐Wang-Ball patch进行研究。关键词:王球多项式,双谐波,微分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Biharmonic Wang-Ball Surface
A prescribed boundary base on elliptic partial differential operators of method is presented in this study to generate Wang-Ball surfaces. Particularly, the study is heavily concerned with the biharmonic Wang-Ball surfaces, which enables the overall surface to be controlled and generated on boundary curves instead of utilizing set of control points. To show the proposed study method, Biharmonic Wang-Ball patches of degree 3 was chosen for the study. Keywords: Wang-Ball plynomial, biharmonic, differential equa-tinn.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信