{"title":"二阶神经网络与基于变换的平移和方向不变目标识别方法的比较","authors":"R. Duren, B. Peikari","doi":"10.1109/NNSP.1991.239518","DOIUrl":null,"url":null,"abstract":"Neural networks can use second-order neurons to obtain invariance to translations in the input pattern. Alternatively transform methods can be used to obtain translation invariance before classification by a neural network. The authors compare the use of second-order neurons to various translation-invariant transforms. The mapping properties of second-order neurons are compared to those of the general class of fast translation-invariant transforms introduced by Wagh and Kanetkar (1977) and to the power spectra of the Walsh-Hadamard and discrete Fourier transforms. A fast transformation based on the use of higher-order correlations is introduced. Three theorems are proven concerning the ability of various methods to discriminate between similar patterns. Second-order neurons are shown to have several advantages over the transform methods. Experimental results are presented that corroborate the theory.<<ETX>>","PeriodicalId":354832,"journal":{"name":"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop","volume":"2012 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A comparison of second-order neural networks to transform-based method for translation- and orientation-invariant object recognition\",\"authors\":\"R. Duren, B. Peikari\",\"doi\":\"10.1109/NNSP.1991.239518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural networks can use second-order neurons to obtain invariance to translations in the input pattern. Alternatively transform methods can be used to obtain translation invariance before classification by a neural network. The authors compare the use of second-order neurons to various translation-invariant transforms. The mapping properties of second-order neurons are compared to those of the general class of fast translation-invariant transforms introduced by Wagh and Kanetkar (1977) and to the power spectra of the Walsh-Hadamard and discrete Fourier transforms. A fast transformation based on the use of higher-order correlations is introduced. Three theorems are proven concerning the ability of various methods to discriminate between similar patterns. Second-order neurons are shown to have several advantages over the transform methods. Experimental results are presented that corroborate the theory.<<ETX>>\",\"PeriodicalId\":354832,\"journal\":{\"name\":\"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop\",\"volume\":\"2012 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.1991.239518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.1991.239518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A comparison of second-order neural networks to transform-based method for translation- and orientation-invariant object recognition
Neural networks can use second-order neurons to obtain invariance to translations in the input pattern. Alternatively transform methods can be used to obtain translation invariance before classification by a neural network. The authors compare the use of second-order neurons to various translation-invariant transforms. The mapping properties of second-order neurons are compared to those of the general class of fast translation-invariant transforms introduced by Wagh and Kanetkar (1977) and to the power spectra of the Walsh-Hadamard and discrete Fourier transforms. A fast transformation based on the use of higher-order correlations is introduced. Three theorems are proven concerning the ability of various methods to discriminate between similar patterns. Second-order neurons are shown to have several advantages over the transform methods. Experimental results are presented that corroborate the theory.<>