核密度分布特征提高宫颈组织病理图像识别

Zhuangzhuang Wang, Mengning Yang, Yangfan Lyu, Kairun Chen, Qicheng Tang
{"title":"核密度分布特征提高宫颈组织病理图像识别","authors":"Zhuangzhuang Wang, Mengning Yang, Yangfan Lyu, Kairun Chen, Qicheng Tang","doi":"10.1109/ICIP42928.2021.9506093","DOIUrl":null,"url":null,"abstract":"Cervical carcinoma is a common type of cancer in the female reproductive system. Early detection and diagnosis can facilitate immediate treatment and prevent progression of the disease. However, in order to achieve better performance, DL-based algorithms just stack various layers with low interpretability. In this paper, a robust and reliable Nuclear Density Distribution Feature (NDDF) based on priors of the pathologists to promote the Cervical Histopathological Image Classification (CHIC) is proposed. Our proposed method combines the nucleus mask segmented by U-Net with the segmentation grid-lines generated from pathology images utilizing SLIC to obtain the NDDF map, which contains information about the morphology, size, number, and spatial distribution of nuclei. The result shows that the proposed model trained with NDDF maps has better performance and accuracy than that trained on RGB images (patch-level histopathological images). More significantly, the accuracy of the two-stream network trained with RGB images and NDDF maps is steadily improved over the corresponding baselines of different complexity.","PeriodicalId":314429,"journal":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nuclear Density Distribution Feature for Improving Cervical Histopathological Images Recognition\",\"authors\":\"Zhuangzhuang Wang, Mengning Yang, Yangfan Lyu, Kairun Chen, Qicheng Tang\",\"doi\":\"10.1109/ICIP42928.2021.9506093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cervical carcinoma is a common type of cancer in the female reproductive system. Early detection and diagnosis can facilitate immediate treatment and prevent progression of the disease. However, in order to achieve better performance, DL-based algorithms just stack various layers with low interpretability. In this paper, a robust and reliable Nuclear Density Distribution Feature (NDDF) based on priors of the pathologists to promote the Cervical Histopathological Image Classification (CHIC) is proposed. Our proposed method combines the nucleus mask segmented by U-Net with the segmentation grid-lines generated from pathology images utilizing SLIC to obtain the NDDF map, which contains information about the morphology, size, number, and spatial distribution of nuclei. The result shows that the proposed model trained with NDDF maps has better performance and accuracy than that trained on RGB images (patch-level histopathological images). More significantly, the accuracy of the two-stream network trained with RGB images and NDDF maps is steadily improved over the corresponding baselines of different complexity.\",\"PeriodicalId\":314429,\"journal\":{\"name\":\"2021 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP42928.2021.9506093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP42928.2021.9506093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

宫颈癌是女性生殖系统中一种常见的癌症。早期发现和诊断可以促进立即治疗并防止疾病的发展。然而,为了获得更好的性能,基于dl的算法只是将各种层叠加在一起,可解释性很低。本文提出了一种基于病理学家先验信息的鲁棒可靠的核密度分布特征(NDDF)来促进宫颈组织病理图像分类(CHIC)。我们提出的方法将U-Net分割的细胞核掩膜与利用SLIC从病理图像中生成的分割网格线相结合,获得包含细胞核形态、大小、数量和空间分布信息的NDDF图。结果表明,使用NDDF图训练的模型比使用RGB图像(斑块级组织病理学图像)训练的模型具有更好的性能和准确性。更重要的是,在不同复杂度的相应基线上,RGB图像和NDDF地图训练的两流网络的准确率稳步提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nuclear Density Distribution Feature for Improving Cervical Histopathological Images Recognition
Cervical carcinoma is a common type of cancer in the female reproductive system. Early detection and diagnosis can facilitate immediate treatment and prevent progression of the disease. However, in order to achieve better performance, DL-based algorithms just stack various layers with low interpretability. In this paper, a robust and reliable Nuclear Density Distribution Feature (NDDF) based on priors of the pathologists to promote the Cervical Histopathological Image Classification (CHIC) is proposed. Our proposed method combines the nucleus mask segmented by U-Net with the segmentation grid-lines generated from pathology images utilizing SLIC to obtain the NDDF map, which contains information about the morphology, size, number, and spatial distribution of nuclei. The result shows that the proposed model trained with NDDF maps has better performance and accuracy than that trained on RGB images (patch-level histopathological images). More significantly, the accuracy of the two-stream network trained with RGB images and NDDF maps is steadily improved over the corresponding baselines of different complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信