用于复杂社会经济过程和系统的数据挖掘工具

T. Obelets
{"title":"用于复杂社会经济过程和系统的数据挖掘工具","authors":"T. Obelets","doi":"10.20535/srit.2308-8893.2022.4.06","DOIUrl":null,"url":null,"abstract":"The paper considers discovering new and potentially useful information from large amounts of data that actualizes the role of developing data mining tools for complex socio-economic processes and systems based on the principles of the digital economy and their processing using network applications. The stages of data mining for complex socio-economic processes and systems were outlined. The algorithm of data mining was considered. It is determined that the previously used stages of data mining, which were limited to the model-building process, can be extended through the use of more powerful computer technology and the emergence of free access to large amounts of multidimensional data. The available stages of data mining for complex socio-economic processes and systems include the processes of facilitating data preparation, evaluation, and visualization of models, as well as in-depth learning. The data mining tools for complex socio-economic processes and systems in the context of technological progress and following the big data paradigm were identified. The data processing cycle has been investigated; this process consists of a series of steps starting with the input of raw data and ending with the output of useful information. The knowledge obtained at the data processing stage is the basis for creating models of complex socio-economic processes and systems. Two types of models (descriptive and predictive) that could be created in the data mining process were outlined. Algorithms for estimating and analyzing data for modeling complex socio-economic processes and systems in accordance with the pre-set task were determined. The efficiency of introducing neural networks and deep learning methods used in data mining was analyzed. It was determined that they would allow effective analysis and use of the existing large data sets for operational human resources management and strategic planning of complex socio-economic processes and systems.","PeriodicalId":330635,"journal":{"name":"System research and information technologies","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Data mining tools for complex socio-economic processes and systems\",\"authors\":\"T. Obelets\",\"doi\":\"10.20535/srit.2308-8893.2022.4.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper considers discovering new and potentially useful information from large amounts of data that actualizes the role of developing data mining tools for complex socio-economic processes and systems based on the principles of the digital economy and their processing using network applications. The stages of data mining for complex socio-economic processes and systems were outlined. The algorithm of data mining was considered. It is determined that the previously used stages of data mining, which were limited to the model-building process, can be extended through the use of more powerful computer technology and the emergence of free access to large amounts of multidimensional data. The available stages of data mining for complex socio-economic processes and systems include the processes of facilitating data preparation, evaluation, and visualization of models, as well as in-depth learning. The data mining tools for complex socio-economic processes and systems in the context of technological progress and following the big data paradigm were identified. The data processing cycle has been investigated; this process consists of a series of steps starting with the input of raw data and ending with the output of useful information. The knowledge obtained at the data processing stage is the basis for creating models of complex socio-economic processes and systems. Two types of models (descriptive and predictive) that could be created in the data mining process were outlined. Algorithms for estimating and analyzing data for modeling complex socio-economic processes and systems in accordance with the pre-set task were determined. The efficiency of introducing neural networks and deep learning methods used in data mining was analyzed. It was determined that they would allow effective analysis and use of the existing large data sets for operational human resources management and strategic planning of complex socio-economic processes and systems.\",\"PeriodicalId\":330635,\"journal\":{\"name\":\"System research and information technologies\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"System research and information technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20535/srit.2308-8893.2022.4.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"System research and information technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20535/srit.2308-8893.2022.4.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文考虑从大量数据中发现新的和潜在有用的信息,这些信息实现了基于数字经济原理及其使用网络应用程序处理的复杂社会经济过程和系统的数据挖掘工具的开发作用。概述了对复杂社会经济过程和系统进行数据挖掘的各个阶段。考虑了数据挖掘算法。可以确定的是,以前使用的数据挖掘阶段仅限于模型构建过程,可以通过使用更强大的计算机技术和免费访问大量多维数据的出现来扩展。复杂社会经济过程和系统的可用数据挖掘阶段包括促进数据准备、评估和模型可视化以及深入学习的过程。在技术进步和大数据范式的背景下,确定了用于复杂社会经济过程和系统的数据挖掘工具。研究了数据处理周期;这个过程由一系列步骤组成,从输入原始数据开始,到输出有用的信息结束。在数据处理阶段获得的知识是创建复杂社会经济过程和系统模型的基础。概述了可以在数据挖掘过程中创建的两种类型的模型(描述性和预测性)。根据预先设定的任务,确定了估算和分析复杂社会经济过程和系统建模数据的算法。分析了在数据挖掘中引入神经网络和深度学习方法的效率。会议确定,这些数据集可以有效地分析和利用现有的大型数据集,用于业务人力资源管理和复杂社会经济进程和系统的战略规划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data mining tools for complex socio-economic processes and systems
The paper considers discovering new and potentially useful information from large amounts of data that actualizes the role of developing data mining tools for complex socio-economic processes and systems based on the principles of the digital economy and their processing using network applications. The stages of data mining for complex socio-economic processes and systems were outlined. The algorithm of data mining was considered. It is determined that the previously used stages of data mining, which were limited to the model-building process, can be extended through the use of more powerful computer technology and the emergence of free access to large amounts of multidimensional data. The available stages of data mining for complex socio-economic processes and systems include the processes of facilitating data preparation, evaluation, and visualization of models, as well as in-depth learning. The data mining tools for complex socio-economic processes and systems in the context of technological progress and following the big data paradigm were identified. The data processing cycle has been investigated; this process consists of a series of steps starting with the input of raw data and ending with the output of useful information. The knowledge obtained at the data processing stage is the basis for creating models of complex socio-economic processes and systems. Two types of models (descriptive and predictive) that could be created in the data mining process were outlined. Algorithms for estimating and analyzing data for modeling complex socio-economic processes and systems in accordance with the pre-set task were determined. The efficiency of introducing neural networks and deep learning methods used in data mining was analyzed. It was determined that they would allow effective analysis and use of the existing large data sets for operational human resources management and strategic planning of complex socio-economic processes and systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信