基于局部离群因子和隔离森林算法的信用卡欺诈检测准确率研究

Kanishka Negi, Gaddam Prathik Kumar, G. Raj, S. Sahana, Vishal Jain
{"title":"基于局部离群因子和隔离森林算法的信用卡欺诈检测准确率研究","authors":"Kanishka Negi, Gaddam Prathik Kumar, G. Raj, S. Sahana, Vishal Jain","doi":"10.1109/confluence52989.2022.9734123","DOIUrl":null,"url":null,"abstract":"In this era of digitalization where everyone prefers online-based transactional activities, this increases the demand for a credit card, the fraudulent cases are increasing day by day which causes tremendous loss to an individual. Our model comprises 2 major algorithms and uses anomaly detection as a method to classify fraudulent transactions. With the help of these two algorithms i. e., local outlier factor and Isolation Forest. We are implementing our Machine Learning (ML) Model Credit Card Fraud Detection (CCFD) to get the highest possible degree of accuracy of fraud, these two algorithms in layman rs terms isolate the transaction or it can be considered as an outlier i.e., deviation from a normal and common order which have a high rate of anomaly or fraud transaction.","PeriodicalId":261941,"journal":{"name":"2022 12th International Conference on Cloud Computing, Data Science & Engineering (Confluence)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Degree of Accuracy in Credit Card Fraud Detection Using Local Outlier Factor and Isolation Forest Algorithm\",\"authors\":\"Kanishka Negi, Gaddam Prathik Kumar, G. Raj, S. Sahana, Vishal Jain\",\"doi\":\"10.1109/confluence52989.2022.9734123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this era of digitalization where everyone prefers online-based transactional activities, this increases the demand for a credit card, the fraudulent cases are increasing day by day which causes tremendous loss to an individual. Our model comprises 2 major algorithms and uses anomaly detection as a method to classify fraudulent transactions. With the help of these two algorithms i. e., local outlier factor and Isolation Forest. We are implementing our Machine Learning (ML) Model Credit Card Fraud Detection (CCFD) to get the highest possible degree of accuracy of fraud, these two algorithms in layman rs terms isolate the transaction or it can be considered as an outlier i.e., deviation from a normal and common order which have a high rate of anomaly or fraud transaction.\",\"PeriodicalId\":261941,\"journal\":{\"name\":\"2022 12th International Conference on Cloud Computing, Data Science & Engineering (Confluence)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 12th International Conference on Cloud Computing, Data Science & Engineering (Confluence)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/confluence52989.2022.9734123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 12th International Conference on Cloud Computing, Data Science & Engineering (Confluence)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/confluence52989.2022.9734123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在这个数字化时代,每个人都喜欢在线交易活动,这增加了对信用卡的需求,欺诈案件日益增加,给个人造成了巨大的损失。我们的模型包括两种主要算法,并使用异常检测作为对欺诈交易进行分类的方法。利用局部离群因子和隔离森林这两种算法。我们正在实现我们的机器学习(ML)模型信用卡欺诈检测(CCFD)以获得尽可能高的欺诈准确性,这两种算法在外行术语中隔离交易,或者可以将其视为异常值,即偏离正常和常见的订单,这些订单具有高异常或欺诈交易率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Degree of Accuracy in Credit Card Fraud Detection Using Local Outlier Factor and Isolation Forest Algorithm
In this era of digitalization where everyone prefers online-based transactional activities, this increases the demand for a credit card, the fraudulent cases are increasing day by day which causes tremendous loss to an individual. Our model comprises 2 major algorithms and uses anomaly detection as a method to classify fraudulent transactions. With the help of these two algorithms i. e., local outlier factor and Isolation Forest. We are implementing our Machine Learning (ML) Model Credit Card Fraud Detection (CCFD) to get the highest possible degree of accuracy of fraud, these two algorithms in layman rs terms isolate the transaction or it can be considered as an outlier i.e., deviation from a normal and common order which have a high rate of anomaly or fraud transaction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信