patchVVC:一个实时压缩框架的流容量视频

Ru Chen, Mengbai Xiao, Dongxiao Yu, Guanghui Zhang, Yao Liu
{"title":"patchVVC:一个实时压缩框架的流容量视频","authors":"Ru Chen, Mengbai Xiao, Dongxiao Yu, Guanghui Zhang, Yao Liu","doi":"10.1145/3587819.3590983","DOIUrl":null,"url":null,"abstract":"Nowadays, volumetric video has emerged as an attractive multimedia application, which provides highly immersive watching experiences. However, streaming the volumetric video demands prohibitively high bandwidth. Thus, effectively compressing its underlying point cloud frames is essential to deploying the volumetric videos. The existing compression techniques are either 3D-based or 2D-based, but they still have drawbacks when being deployed in practice. The 2D-based methods compress the videos in an effective but slow manner, while the 3D-based methods feature high coding speeds but low compression ratios. In this paper, we propose patchVVC, a 3D-based compression framework that reaches both a high compression ratio and a real-time decoding speed. More importantly, patchVVC is designed based on point cloud patches, which makes it friendly to an field of view adaptive streaming system that further reduces the bandwidth demands. The evaluation shows patchVCC achieves the real-time decoding speed and the comparable compression ratios as the representative 2D-based scheme, V-PCC, in an FoV-adaptive streaming scenario.","PeriodicalId":330983,"journal":{"name":"Proceedings of the 14th Conference on ACM Multimedia Systems","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"patchVVC: A Real-time Compression Framework for Streaming Volumetric Videos\",\"authors\":\"Ru Chen, Mengbai Xiao, Dongxiao Yu, Guanghui Zhang, Yao Liu\",\"doi\":\"10.1145/3587819.3590983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, volumetric video has emerged as an attractive multimedia application, which provides highly immersive watching experiences. However, streaming the volumetric video demands prohibitively high bandwidth. Thus, effectively compressing its underlying point cloud frames is essential to deploying the volumetric videos. The existing compression techniques are either 3D-based or 2D-based, but they still have drawbacks when being deployed in practice. The 2D-based methods compress the videos in an effective but slow manner, while the 3D-based methods feature high coding speeds but low compression ratios. In this paper, we propose patchVVC, a 3D-based compression framework that reaches both a high compression ratio and a real-time decoding speed. More importantly, patchVVC is designed based on point cloud patches, which makes it friendly to an field of view adaptive streaming system that further reduces the bandwidth demands. The evaluation shows patchVCC achieves the real-time decoding speed and the comparable compression ratios as the representative 2D-based scheme, V-PCC, in an FoV-adaptive streaming scenario.\",\"PeriodicalId\":330983,\"journal\":{\"name\":\"Proceedings of the 14th Conference on ACM Multimedia Systems\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 14th Conference on ACM Multimedia Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3587819.3590983\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 14th Conference on ACM Multimedia Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3587819.3590983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如今,体积视频已经成为一种有吸引力的多媒体应用,它提供了高度身临其境的观看体验。然而,流式传输大容量视频需要过高的带宽。因此,有效地压缩其底层点云帧对于部署体积视频至关重要。现有的压缩技术有基于3d或基于2d的,但在实际应用中仍然存在缺陷。基于2d的方法压缩视频有效但速度慢,而基于3d的方法编码速度快但压缩比低。在本文中,我们提出了patchVVC,一个基于3d的压缩框架,达到了高压缩比和实时解码速度。更重要的是,patchVVC是基于点云补丁设计的,这使得它适合视场自适应流系统,进一步降低了带宽需求。评估结果表明,在视场自适应流场景下,patchVCC达到了与具有代表性的2D-based方案V-PCC相当的实时解码速度和压缩比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
patchVVC: A Real-time Compression Framework for Streaming Volumetric Videos
Nowadays, volumetric video has emerged as an attractive multimedia application, which provides highly immersive watching experiences. However, streaming the volumetric video demands prohibitively high bandwidth. Thus, effectively compressing its underlying point cloud frames is essential to deploying the volumetric videos. The existing compression techniques are either 3D-based or 2D-based, but they still have drawbacks when being deployed in practice. The 2D-based methods compress the videos in an effective but slow manner, while the 3D-based methods feature high coding speeds but low compression ratios. In this paper, we propose patchVVC, a 3D-based compression framework that reaches both a high compression ratio and a real-time decoding speed. More importantly, patchVVC is designed based on point cloud patches, which makes it friendly to an field of view adaptive streaming system that further reduces the bandwidth demands. The evaluation shows patchVCC achieves the real-time decoding speed and the comparable compression ratios as the representative 2D-based scheme, V-PCC, in an FoV-adaptive streaming scenario.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信