一类混合非线性系统吸引域的稳定性分析与估计

A. Aleksandrov, E. Aleksandrova, A. Platonov, G. Dai
{"title":"一类混合非线性系统吸引域的稳定性分析与估计","authors":"A. Aleksandrov, E. Aleksandrova, A. Platonov, G. Dai","doi":"10.1109/SCP.2015.7342044","DOIUrl":null,"url":null,"abstract":"A switched system generated by the family of homogeneous subsystems with homogeneity orders less than one is studied. It is assumed that the zero solution of each subsystem is asymptotically stable. On the basis of the dwell-time approach, conditions on switching law are determined under which a given spherical neighborhood of the origin is contained in the attraction domain of the zero solution of the corresponding hybrid system.","PeriodicalId":110366,"journal":{"name":"2015 International Conference \"Stability and Control Processes\" in Memory of V.I. Zubov (SCP)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability analysis and estimation of the attraction domain for a class of hybrid nonlinear systems\",\"authors\":\"A. Aleksandrov, E. Aleksandrova, A. Platonov, G. Dai\",\"doi\":\"10.1109/SCP.2015.7342044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A switched system generated by the family of homogeneous subsystems with homogeneity orders less than one is studied. It is assumed that the zero solution of each subsystem is asymptotically stable. On the basis of the dwell-time approach, conditions on switching law are determined under which a given spherical neighborhood of the origin is contained in the attraction domain of the zero solution of the corresponding hybrid system.\",\"PeriodicalId\":110366,\"journal\":{\"name\":\"2015 International Conference \\\"Stability and Control Processes\\\" in Memory of V.I. Zubov (SCP)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference \\\"Stability and Control Processes\\\" in Memory of V.I. Zubov (SCP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCP.2015.7342044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference \"Stability and Control Processes\" in Memory of V.I. Zubov (SCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCP.2015.7342044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了由齐次阶数小于1的齐次子系统族生成的切换系统。假设各子系统的零解是渐近稳定的。在停留时间方法的基础上,确定了切换律的条件,在此条件下,原点的给定球面邻域包含在相应混合系统零解的吸引域中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability analysis and estimation of the attraction domain for a class of hybrid nonlinear systems
A switched system generated by the family of homogeneous subsystems with homogeneity orders less than one is studied. It is assumed that the zero solution of each subsystem is asymptotically stable. On the basis of the dwell-time approach, conditions on switching law are determined under which a given spherical neighborhood of the origin is contained in the attraction domain of the zero solution of the corresponding hybrid system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信