特定领域本体概念提取与层次扩展

Grace Zhao, Xiaowen Zhang
{"title":"特定领域本体概念提取与层次扩展","authors":"Grace Zhao, Xiaowen Zhang","doi":"10.1145/3278293.3278302","DOIUrl":null,"url":null,"abstract":"The domain-specific vernaculars and notations have been a hurdle to automatic ontology building and augmentation, since most of the ontology learning methods are essentially based on the natural language studies and lexicosyntactic pattern explorations. This paper proposes two robust approaches to ontology hierarchical enhancement, in particular, adding new terms to the ontology graph. We designed our learning models from a computational vantage point, examining the inter-relationship between documents, ontology dictionary terms, and the graph structure of the seed ontology. We then take advantage of late studies of neural networks and machine learning to perform classification over the inter-related data, and insert the new term at the most desirable nodal place on the domain ontology graph.","PeriodicalId":183745,"journal":{"name":"Proceedings of the 2nd International Conference on Natural Language Processing and Information Retrieval","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Domain-Specific Ontology Concept Extraction and Hierarchy Extension\",\"authors\":\"Grace Zhao, Xiaowen Zhang\",\"doi\":\"10.1145/3278293.3278302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The domain-specific vernaculars and notations have been a hurdle to automatic ontology building and augmentation, since most of the ontology learning methods are essentially based on the natural language studies and lexicosyntactic pattern explorations. This paper proposes two robust approaches to ontology hierarchical enhancement, in particular, adding new terms to the ontology graph. We designed our learning models from a computational vantage point, examining the inter-relationship between documents, ontology dictionary terms, and the graph structure of the seed ontology. We then take advantage of late studies of neural networks and machine learning to perform classification over the inter-related data, and insert the new term at the most desirable nodal place on the domain ontology graph.\",\"PeriodicalId\":183745,\"journal\":{\"name\":\"Proceedings of the 2nd International Conference on Natural Language Processing and Information Retrieval\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd International Conference on Natural Language Processing and Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3278293.3278302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Conference on Natural Language Processing and Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3278293.3278302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

由于大多数本体学习方法本质上是基于自然语言研究和词汇句法模式探索,因此,领域专用术语和符号一直是实现本体自动构建和增强的一个障碍。本文提出了两种健壮的本体层次增强方法,特别是在本体图中添加新术语。我们从计算的角度设计了我们的学习模型,检查了文档、本体词典术语和种子本体的图结构之间的相互关系。然后,我们利用神经网络和机器学习的最新研究对相互关联的数据进行分类,并在领域本体图上最理想的节点位置插入新术语。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Domain-Specific Ontology Concept Extraction and Hierarchy Extension
The domain-specific vernaculars and notations have been a hurdle to automatic ontology building and augmentation, since most of the ontology learning methods are essentially based on the natural language studies and lexicosyntactic pattern explorations. This paper proposes two robust approaches to ontology hierarchical enhancement, in particular, adding new terms to the ontology graph. We designed our learning models from a computational vantage point, examining the inter-relationship between documents, ontology dictionary terms, and the graph structure of the seed ontology. We then take advantage of late studies of neural networks and machine learning to perform classification over the inter-related data, and insert the new term at the most desirable nodal place on the domain ontology graph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信