WMEVF:一种分类数据的离群值检测方法

N. Rokhman, Subanar, E. Winarko
{"title":"WMEVF:一种分类数据的离群值检测方法","authors":"N. Rokhman, Subanar, E. Winarko","doi":"10.1109/IAC.2016.7905686","DOIUrl":null,"url":null,"abstract":"Outliers are uncommon events in real life. For a database processing, an outlier means unusual record comparing to the others. An outlier can be caused by a damage to a system, an intruder in a system, or a new fact in a system. Outlier detection is an important task to find an exceptional data.","PeriodicalId":404904,"journal":{"name":"2016 International Conference on Informatics and Computing (ICIC)","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"WMEVF: An outlier detection methods for categorical data\",\"authors\":\"N. Rokhman, Subanar, E. Winarko\",\"doi\":\"10.1109/IAC.2016.7905686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Outliers are uncommon events in real life. For a database processing, an outlier means unusual record comparing to the others. An outlier can be caused by a damage to a system, an intruder in a system, or a new fact in a system. Outlier detection is an important task to find an exceptional data.\",\"PeriodicalId\":404904,\"journal\":{\"name\":\"2016 International Conference on Informatics and Computing (ICIC)\",\"volume\":\"139 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Informatics and Computing (ICIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAC.2016.7905686\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Informatics and Computing (ICIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAC.2016.7905686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

异常值是现实生活中不常见的事件。对于数据库处理,异常值表示与其他记录相比不寻常的记录。异常值可能由系统损坏、系统中的入侵者或系统中的新事实引起。异常点检测是发现异常数据的一项重要任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
WMEVF: An outlier detection methods for categorical data
Outliers are uncommon events in real life. For a database processing, an outlier means unusual record comparing to the others. An outlier can be caused by a damage to a system, an intruder in a system, or a new fact in a system. Outlier detection is an important task to find an exceptional data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信