{"title":"WMEVF:一种分类数据的离群值检测方法","authors":"N. Rokhman, Subanar, E. Winarko","doi":"10.1109/IAC.2016.7905686","DOIUrl":null,"url":null,"abstract":"Outliers are uncommon events in real life. For a database processing, an outlier means unusual record comparing to the others. An outlier can be caused by a damage to a system, an intruder in a system, or a new fact in a system. Outlier detection is an important task to find an exceptional data.","PeriodicalId":404904,"journal":{"name":"2016 International Conference on Informatics and Computing (ICIC)","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"WMEVF: An outlier detection methods for categorical data\",\"authors\":\"N. Rokhman, Subanar, E. Winarko\",\"doi\":\"10.1109/IAC.2016.7905686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Outliers are uncommon events in real life. For a database processing, an outlier means unusual record comparing to the others. An outlier can be caused by a damage to a system, an intruder in a system, or a new fact in a system. Outlier detection is an important task to find an exceptional data.\",\"PeriodicalId\":404904,\"journal\":{\"name\":\"2016 International Conference on Informatics and Computing (ICIC)\",\"volume\":\"139 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Informatics and Computing (ICIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAC.2016.7905686\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Informatics and Computing (ICIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAC.2016.7905686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
WMEVF: An outlier detection methods for categorical data
Outliers are uncommon events in real life. For a database processing, an outlier means unusual record comparing to the others. An outlier can be caused by a damage to a system, an intruder in a system, or a new fact in a system. Outlier detection is an important task to find an exceptional data.