基于SOM-SVM的斑马鱼基因表达分析方法

Wu Wei, Liu Xin, Xu Min, Peng Jinrong, R. Setiono
{"title":"基于SOM-SVM的斑马鱼基因表达分析方法","authors":"Wu Wei, Liu Xin, Xu Min, Peng Jinrong, R. Setiono","doi":"10.1109/ICPR.2004.1334191","DOIUrl":null,"url":null,"abstract":"Microarray technology can be employed to quantitatively measure the expression of thousands of genes in a single experiment. It has become one of the main tools for global gene expression analysis in molecular biology research in recent years. The large amount of expression data generated by this technology makes the study of certain complex biological problems possible, and machine learning methods are expected to play a crucial role in the analysis process. We present our results from integrating a self-organizing maps (SOM) and a support vector machine (SVM) for the analysis of the various functions of zebra fish genes based on their expression. We discuss how SOM can be used as a data-filtering tool to improve the classification performance of the SVM on this data set.","PeriodicalId":335842,"journal":{"name":"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A hybrid SOM-SVM method for analyzing zebra fish gene expression\",\"authors\":\"Wu Wei, Liu Xin, Xu Min, Peng Jinrong, R. Setiono\",\"doi\":\"10.1109/ICPR.2004.1334191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microarray technology can be employed to quantitatively measure the expression of thousands of genes in a single experiment. It has become one of the main tools for global gene expression analysis in molecular biology research in recent years. The large amount of expression data generated by this technology makes the study of certain complex biological problems possible, and machine learning methods are expected to play a crucial role in the analysis process. We present our results from integrating a self-organizing maps (SOM) and a support vector machine (SVM) for the analysis of the various functions of zebra fish genes based on their expression. We discuss how SOM can be used as a data-filtering tool to improve the classification performance of the SVM on this data set.\",\"PeriodicalId\":335842,\"journal\":{\"name\":\"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2004.1334191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2004.1334191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

微阵列技术可以在单个实验中定量测量数千个基因的表达。近年来,它已成为分子生物学研究中全局基因表达分析的主要工具之一。该技术产生的大量表达数据使得研究某些复杂的生物学问题成为可能,机器学习方法有望在分析过程中发挥至关重要的作用。结合自组织映射(SOM)和支持向量机(SVM)对斑马鱼基因表达的各种功能进行了分析。我们讨论了如何使用SOM作为数据过滤工具来提高支持向量机在该数据集上的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hybrid SOM-SVM method for analyzing zebra fish gene expression
Microarray technology can be employed to quantitatively measure the expression of thousands of genes in a single experiment. It has become one of the main tools for global gene expression analysis in molecular biology research in recent years. The large amount of expression data generated by this technology makes the study of certain complex biological problems possible, and machine learning methods are expected to play a crucial role in the analysis process. We present our results from integrating a self-organizing maps (SOM) and a support vector machine (SVM) for the analysis of the various functions of zebra fish genes based on their expression. We discuss how SOM can be used as a data-filtering tool to improve the classification performance of the SVM on this data set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信