训练深度神经网络的偏微分方程

P. Chaudhari, Adam M. Oberman, S. Osher, Stefano Soatto, G. Carlier
{"title":"训练深度神经网络的偏微分方程","authors":"P. Chaudhari, Adam M. Oberman, S. Osher, Stefano Soatto, G. Carlier","doi":"10.1109/ACSSC.2017.8335634","DOIUrl":null,"url":null,"abstract":"This paper establishes a connection between non-convex optimization and nonlinear partial differential equations (PDEs). We interpret empirically successful relaxation techniques motivated from statistical physics for training deep neural networks as solutions of a viscous Hamilton-Jacobi (HJ) PDE. The underlying stochastic control interpretation allows us to prove that these techniques perform better than stochastic gradient descent. Our analysis provides insight into the geometry of the energy landscape and suggests new algorithms based on the non-viscous Hamilton-Jacobi PDE that can effectively tackle the high dimensionality of modern neural networks.","PeriodicalId":296208,"journal":{"name":"2017 51st Asilomar Conference on Signals, Systems, and Computers","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Partial differential equations for training deep neural networks\",\"authors\":\"P. Chaudhari, Adam M. Oberman, S. Osher, Stefano Soatto, G. Carlier\",\"doi\":\"10.1109/ACSSC.2017.8335634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper establishes a connection between non-convex optimization and nonlinear partial differential equations (PDEs). We interpret empirically successful relaxation techniques motivated from statistical physics for training deep neural networks as solutions of a viscous Hamilton-Jacobi (HJ) PDE. The underlying stochastic control interpretation allows us to prove that these techniques perform better than stochastic gradient descent. Our analysis provides insight into the geometry of the energy landscape and suggests new algorithms based on the non-viscous Hamilton-Jacobi PDE that can effectively tackle the high dimensionality of modern neural networks.\",\"PeriodicalId\":296208,\"journal\":{\"name\":\"2017 51st Asilomar Conference on Signals, Systems, and Computers\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 51st Asilomar Conference on Signals, Systems, and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSSC.2017.8335634\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 51st Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2017.8335634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文建立了非凸优化与非线性偏微分方程之间的联系。我们将经验上成功的松弛技术解释为训练深度神经网络的统计物理学动机作为粘性汉密尔顿-雅可比(HJ) PDE的解决方案。潜在的随机控制解释使我们能够证明这些技术比随机梯度下降性能更好。我们的分析提供了对能源格局几何的洞察,并提出了基于非粘性Hamilton-Jacobi PDE的新算法,该算法可以有效地解决现代神经网络的高维问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Partial differential equations for training deep neural networks
This paper establishes a connection between non-convex optimization and nonlinear partial differential equations (PDEs). We interpret empirically successful relaxation techniques motivated from statistical physics for training deep neural networks as solutions of a viscous Hamilton-Jacobi (HJ) PDE. The underlying stochastic control interpretation allows us to prove that these techniques perform better than stochastic gradient descent. Our analysis provides insight into the geometry of the energy landscape and suggests new algorithms based on the non-viscous Hamilton-Jacobi PDE that can effectively tackle the high dimensionality of modern neural networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信