生物医学和环境应用的高性能电化学生物传感器综述

S. Leung
{"title":"生物医学和环境应用的高性能电化学生物传感器综述","authors":"S. Leung","doi":"10.54026/esecr/1039","DOIUrl":null,"url":null,"abstract":"Since the outbreak of COVID 19 in 2020, being able to detect diseases and chemicals with quick turn-around time becomes ever so needed and important. We have mounted seven different biocatalysts on a sensor platform to examine the performance of this electrochemical sensing system for the detection of different biomolecules/metabolites and environmental important molecules, with such we also compared how this sensing system fares with literature results of similar measurements. The sensor platform constitutes of a layer of bio composite mounted on different electrodes made out of Au, Ag, Pt, and glass carbon; the bio composite is fabricated with polymers and sol-gel Au nanoparticles with or without an extra layer of branching biomolecules. The targeting species for measurements include NH4+, NO3-, CN-, H2O2, and the biomolecules that post specific biomedical functions/identities. In this report, we provide a systematic update of analyses of this sensing system, including the unique identification potentials and sensitivities. This novel sensing system can be a valuable tool in biomedical diagnosis and environmental forensics; in particular the sensor platform used here, any biomedical diagnosis can be conducted with extremely high sensitivity as long as the biomolecules and their antigens are known.","PeriodicalId":140386,"journal":{"name":"Environmental Sciences and Ecology: Current Research (ESECR","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive Review of High Performing Electrochemical Biosensors for Biomedical and Environmental Applications\",\"authors\":\"S. Leung\",\"doi\":\"10.54026/esecr/1039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since the outbreak of COVID 19 in 2020, being able to detect diseases and chemicals with quick turn-around time becomes ever so needed and important. We have mounted seven different biocatalysts on a sensor platform to examine the performance of this electrochemical sensing system for the detection of different biomolecules/metabolites and environmental important molecules, with such we also compared how this sensing system fares with literature results of similar measurements. The sensor platform constitutes of a layer of bio composite mounted on different electrodes made out of Au, Ag, Pt, and glass carbon; the bio composite is fabricated with polymers and sol-gel Au nanoparticles with or without an extra layer of branching biomolecules. The targeting species for measurements include NH4+, NO3-, CN-, H2O2, and the biomolecules that post specific biomedical functions/identities. In this report, we provide a systematic update of analyses of this sensing system, including the unique identification potentials and sensitivities. This novel sensing system can be a valuable tool in biomedical diagnosis and environmental forensics; in particular the sensor platform used here, any biomedical diagnosis can be conducted with extremely high sensitivity as long as the biomolecules and their antigens are known.\",\"PeriodicalId\":140386,\"journal\":{\"name\":\"Environmental Sciences and Ecology: Current Research (ESECR\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Sciences and Ecology: Current Research (ESECR\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54026/esecr/1039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Sciences and Ecology: Current Research (ESECR","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54026/esecr/1039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自2020年2019冠状病毒病爆发以来,能够快速检测疾病和化学品变得越来越重要。我们在传感器平台上安装了7种不同的生物催化剂,以检查该电化学传感系统检测不同生物分子/代谢物和环境重要分子的性能,并将该传感系统与类似测量的文献结果进行了比较。传感器平台由一层生物复合材料构成,该复合材料安装在由Au、Ag、Pt和玻璃碳制成的不同电极上;该生物复合材料由聚合物和溶胶-凝胶金纳米颗粒制成,有或没有额外的分支生物分子层。测量的目标物质包括NH4+、NO3-、CN-、H2O2以及具有特定生物医学功能/身份的生物分子。在本报告中,我们提供了一个系统的更新分析,包括独特的识别潜力和灵敏度的传感系统。该传感系统在生物医学诊断和环境取证中具有重要的应用价值。特别是这里使用的传感器平台,只要知道生物分子及其抗原,任何生物医学诊断都可以以极高的灵敏度进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comprehensive Review of High Performing Electrochemical Biosensors for Biomedical and Environmental Applications
Since the outbreak of COVID 19 in 2020, being able to detect diseases and chemicals with quick turn-around time becomes ever so needed and important. We have mounted seven different biocatalysts on a sensor platform to examine the performance of this electrochemical sensing system for the detection of different biomolecules/metabolites and environmental important molecules, with such we also compared how this sensing system fares with literature results of similar measurements. The sensor platform constitutes of a layer of bio composite mounted on different electrodes made out of Au, Ag, Pt, and glass carbon; the bio composite is fabricated with polymers and sol-gel Au nanoparticles with or without an extra layer of branching biomolecules. The targeting species for measurements include NH4+, NO3-, CN-, H2O2, and the biomolecules that post specific biomedical functions/identities. In this report, we provide a systematic update of analyses of this sensing system, including the unique identification potentials and sensitivities. This novel sensing system can be a valuable tool in biomedical diagnosis and environmental forensics; in particular the sensor platform used here, any biomedical diagnosis can be conducted with extremely high sensitivity as long as the biomolecules and their antigens are known.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信