进化无标度拓扑使用基因调控网络模型

Miguel Nicolau, Marc Schoenauer
{"title":"进化无标度拓扑使用基因调控网络模型","authors":"Miguel Nicolau, Marc Schoenauer","doi":"10.1109/CEC.2008.4631305","DOIUrl":null,"url":null,"abstract":"A novel approach to generating scale-free network topologies is introduced, based on an existing artificial Gene Regulatory Network model. From this model, different interaction networks can be extracted, based on an activation threshold. By using an Evolutionary Computation approach, the model is allowed to evolve, in order to reach specific network statistical measures. The results obtained show that, when the model uses a duplication and divergence initialisation, such as seen in nature, the resulting regulation networks not only are closer in topology to scale-free networks, but also exhibit a much higher potential for evolution.","PeriodicalId":328803,"journal":{"name":"2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Evolving scale-free topologies using a Gene Regulatory Network model\",\"authors\":\"Miguel Nicolau, Marc Schoenauer\",\"doi\":\"10.1109/CEC.2008.4631305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel approach to generating scale-free network topologies is introduced, based on an existing artificial Gene Regulatory Network model. From this model, different interaction networks can be extracted, based on an activation threshold. By using an Evolutionary Computation approach, the model is allowed to evolve, in order to reach specific network statistical measures. The results obtained show that, when the model uses a duplication and divergence initialisation, such as seen in nature, the resulting regulation networks not only are closer in topology to scale-free networks, but also exhibit a much higher potential for evolution.\",\"PeriodicalId\":328803,\"journal\":{\"name\":\"2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2008.4631305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2008.4631305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在现有人工基因调控网络模型的基础上,提出了一种生成无标度网络拓扑的新方法。从这个模型中,可以根据激活阈值提取不同的交互网络。通过使用进化计算方法,模型可以进化,以达到特定的网络统计度量。所获得的结果表明,当模型使用复制和散度初始化时,例如在自然界中看到的,所得到的调节网络不仅在拓扑上更接近无标度网络,而且还表现出更高的进化潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolving scale-free topologies using a Gene Regulatory Network model
A novel approach to generating scale-free network topologies is introduced, based on an existing artificial Gene Regulatory Network model. From this model, different interaction networks can be extracted, based on an activation threshold. By using an Evolutionary Computation approach, the model is allowed to evolve, in order to reach specific network statistical measures. The results obtained show that, when the model uses a duplication and divergence initialisation, such as seen in nature, the resulting regulation networks not only are closer in topology to scale-free networks, but also exhibit a much higher potential for evolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信