{"title":"利用外部记忆增强个性化搜索的重新发现行为","authors":"Yujia Zhou, Zhicheng Dou, Ji-rong Wen","doi":"10.1145/3336191.3371794","DOIUrl":null,"url":null,"abstract":"The goal of personalized search is to tailor the document ranking list to meet user's individual needs. Previous studies showed users usually look for the information that has been searched before. This is called re-finding behavior which is widely explored in existing personalized search approaches. However, most existing methods for identifying re-finding behavior focus on simple lexical similarities between queries. In this paper, we propose to construct memory networks (MN) to support the identification of more complex re-finding behavior. Specifically, incorporating semantic information, we devise two external memories to make an expansion of re-finding based on the query and the document respectively. We further design an intent memory to recognize session-based re-finding behavior. Endowed with these memory networks, we can build a fine-grained user model dynamically based on the current query and documents, and use the model to re-rank the results. Experimental results show the significant improvement of our model compared with traditional methods.","PeriodicalId":319008,"journal":{"name":"Proceedings of the 13th International Conference on Web Search and Data Mining","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Enhancing Re-finding Behavior with External Memories for Personalized Search\",\"authors\":\"Yujia Zhou, Zhicheng Dou, Ji-rong Wen\",\"doi\":\"10.1145/3336191.3371794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of personalized search is to tailor the document ranking list to meet user's individual needs. Previous studies showed users usually look for the information that has been searched before. This is called re-finding behavior which is widely explored in existing personalized search approaches. However, most existing methods for identifying re-finding behavior focus on simple lexical similarities between queries. In this paper, we propose to construct memory networks (MN) to support the identification of more complex re-finding behavior. Specifically, incorporating semantic information, we devise two external memories to make an expansion of re-finding based on the query and the document respectively. We further design an intent memory to recognize session-based re-finding behavior. Endowed with these memory networks, we can build a fine-grained user model dynamically based on the current query and documents, and use the model to re-rank the results. Experimental results show the significant improvement of our model compared with traditional methods.\",\"PeriodicalId\":319008,\"journal\":{\"name\":\"Proceedings of the 13th International Conference on Web Search and Data Mining\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3336191.3371794\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3336191.3371794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhancing Re-finding Behavior with External Memories for Personalized Search
The goal of personalized search is to tailor the document ranking list to meet user's individual needs. Previous studies showed users usually look for the information that has been searched before. This is called re-finding behavior which is widely explored in existing personalized search approaches. However, most existing methods for identifying re-finding behavior focus on simple lexical similarities between queries. In this paper, we propose to construct memory networks (MN) to support the identification of more complex re-finding behavior. Specifically, incorporating semantic information, we devise two external memories to make an expansion of re-finding based on the query and the document respectively. We further design an intent memory to recognize session-based re-finding behavior. Endowed with these memory networks, we can build a fine-grained user model dynamically based on the current query and documents, and use the model to re-rank the results. Experimental results show the significant improvement of our model compared with traditional methods.